吴恩达卷积神经网络4:人脸识别

本文介绍了人脸识别的关键概念,包括人脸验证、One-shot学习和Siamese网络。重点讨论了Triplet Loss在优化相似度计算中的作用,以及如何通过调整损失函数确保模型能有效区分不同个体。此外,还提到了人脸识别作为二分类问题的优势以及神经风格迁移的相关内容。
摘要由CSDN通过智能技术生成

4.1What is face recognition?

1、人脸验证,判断是否与模板一直,是一对一的问题

2、人脸识别,一对多的问题

所以人脸识别对于正确率的要求更高。

4.2One-shot learning

人脸识别模型只能通过仅仅一张照片来学习,然后就要对比输入给出输出了。

在人脸识别系统中,一般数据库中我们都只有一张某个人的照片,如果用一张照片来训练模型,效果很差,所以要解决这个问题需要引入相似函数

One-shot learning只需要学习函数d(img1, img2)。

4.3、Siamese network

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值