照片聚类2014年最新方法——“Clustering by Composition”

提出一种名为Clustering by Composition的方法,通过照片间的descriptor匹配和传播来发现图像类别。该方法利用照片内的局部特征进行匹配,并通过迭代传播提高匹配质量,最终通过归一化割实现图像聚类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《“Clustering by Composition”—Unsupervised Discovery of Image Categories》 PAMI 2014


       1、首先对相册里的每一张照片,取N个descriptor;

       2、对每一张照片Ii,针对里面每一个descriptor,去相册里剩余的照片里以均匀采样的方式随机取样一张照片;

       3、再在被抽取的照片里随机抽取S个descriptor(当common region占到照片尺寸10%的时候,S=40就可以);

       4、再在这S个descriptor里找到和当前Ii里当前这个descriptor最匹配的一个descriptor,假设和a1暂时最匹配的是                       b16,和a2最匹配的是b7,如下图;


       5、再做propogation,即针对每一个点,看邻居都对应到哪里了。如a2对应到b7,则a2会建议左边邻居要不要考虑 

              下b7左边的b6,所以a1会在b6和b16里面选择一个最佳的匹配;

       6、接下来,假设a1和b6比较匹配,a1又会在b6的周围邻居里面找找看有没有比b6更加适合它的,这样的过程会使

              common region以不规则的方式生长,如下图;


        7、针对每一张照片上每个descriptor都找到对应点后,就可以算照片两两之间的affinity,在这里用Bit-Saving来表示                affinity。

               

               而计算两张照片间的相关度可以用p(R|Ref)/p(R|H0)来表示。分子是指由其中一张reference image提供当前                        image 所需的某一个region R的概率。分母是指当前的region是随机产生的概率。

               p(R|Ref)可以用两张对应照片里的对应区域的所有匹配descriptor的匹配误差来表示,如下。

               
                
                 p(R|H0)可以用R里边所有descriptor随机产生的概率相乘起来得到。
            而每一个p(di|H0)可以用在这个相册所有照片的所有descriptor组成的库D里找到它的概率来表示。
            具体计算过程如下:将D做k-means分群,同一群里的点都用群中心来量化,量化误差就可以用来表示这个点的稀有性。
 
            对于一些随机取到它的概率很高的点,就是它们在D里面会出现很多,所以它们在分群时可以自成一群,它们离群中心也近,所以量化误差小,上述概率就很大。而对于一些离群的独特的点,它们就不能自成一群,就会被分配到附近的群,但是还是离群中心很远,量化误差很大,上述概率很小。即不太可能随机产生。
            根据香农定理,对一个随机变量进行编码所需的编码长度是-log p(x)。所以化解上式得到如下:
            
            即affinity可以用相对于随机产生一个region,用reference image来产生region R,节省的bits数来表示。
       8、得到两两之间的affinity matrix之后,如果I0可以由I1和I2组成,也可以用I3和I4组成,那在下一次迭代中,I3可以听从I0的建议以更高的概率采样到I1。这样就不用去算两两间所有的affinity,相反会得到比较稀疏的affinity,运算量会下降,时间会更快。
       9、大概跑完几十次迭代后,就会收敛。最后做normalize-cut就可分群。


      总结:算法的主要特色是composition和random。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值