《“Clustering by Composition”—Unsupervised Discovery of Image Categories》 PAMI 2014
1、首先对相册里的每一张照片,取N个descriptor;
2、对每一张照片Ii,针对里面每一个descriptor,去相册里剩余的照片里以均匀采样的方式随机取样一张照片;
3、再在被抽取的照片里随机抽取S个descriptor(当common region占到照片尺寸10%的时候,S=40就可以);
4、再在这S个descriptor里找到和当前Ii里当前这个descriptor最匹配的一个descriptor,假设和a1暂时最匹配的是 b16,和a2最匹配的是b7,如下图;
5、再做propogation,即针对每一个点,看邻居都对应到哪里了。如a2对应到b7,则a2会建议左边邻居要不要考虑
下b7左边的b6,所以a1会在b6和b16里面选择一个最佳的匹配;
6、接下来,假设a1和b6比较匹配,a1又会在b6的周围邻居里面找找看有没有比b6更加适合它的,这样的过程会使
common region以不规则的方式生长,如下图;
7、针对每一张照片上每个descriptor都找到对应点后,就可以算照片两两之间的affinity,在这里用Bit-Saving来表示 affinity。
而计算两张照片间的相关度可以用p(R|Ref)/p(R|H0)来表示。分子是指由其中一张reference image提供当前 image 所需的某一个region R的概率。分母是指当前的region是随机产生的概率。
p(R|Ref)可以用两张对应照片里的对应区域的所有匹配descriptor的匹配误差来表示,如下。