全国2024CSP-J普及组试题(T1-T2)

怎么说呢 依旧是海量题干+大数据量 不过我的代码应该是比较易懂的

T1 扑克牌(poker)

时间限制:1000毫秒

内存限制:512MB

题目描述 Description

小 P 从同学小 Q 那儿借来一副 n 张牌的扑克牌。
本题中我们不考虑大小王,此时每张牌具有两个属性:花色和点数。花色共有 4种:
方片、草花、红桃和黑桃。点数共有 13 种,从小到大分别为A 2 3 4 5 6 7 8 9 T J Q K。注意:点数 10 在本题中记为 T。
我们称一副扑克牌是完整的,当且仅当对于每一种花色和每一种点数,都恰好有一张牌具有对应的花色和点数。由此,一副完整的扑克牌恰好有4x13=52 张牌。以下图片展示了一副完整的扑克牌里所有的 52 张牌:


小P借来的牌可能不是完整的,为此小P准备再向同学小S借若干张牌。可以认为小S每种牌都有无限张,因此小P可以任意选择借来的牌。小P想知道他至少得向小S借多少张牌,才能让从小S和小Q借来的牌中,可以选出 52 张牌构成一副完整的扑克牌。
为了方便你的输入,我们使用字符D代表方片,字符C代表草花,字符H代表红桃,字符S代表黑桃,这样每张牌可以通过一个长度为2的字符串表示,其中第一个字符表示这张牌的花色,第二个字符表示这张牌的点数,例如 CA 表示草花 A,ST 表示黑桃 T(黑桃 10)。

输入描述 Input Description

从文件 poker.in 中读入数据。
输入的第一行包含一个整数 n 表示牌数。
接下来 n 行:
每行包含一个长度为 2 的字符串描述一张牌,其中第一个字符描述其花色,第二个字符描述其点数。

输出描述 Output Description

输出到文件 poker.out 中。
输出一行一个整数,表示最少还需要向小 S 借几张牌才能凑成一副完整的扑克牌。

样例输入 Sample Input

样例输入1 1 SA 样例输入2 4 DQ H3 DQ DT

样例输出 Sample Output

样例输出1 51 样例输出2 49

数据范围及提示 Data Size & Hint

【样例 1 解释】
这一副牌中包含一张黑桃 A,小 P 还需要借除了黑桃 A 以外的 51 张牌以构成一副完整的扑克牌。
【样例 2 解释】
这一副牌中包含两张方片 Q、一张方片 T(方片 10)以及一张红桃 3,小 P 还需要借除了红桃 3、方片 T 和方片 Q 以外的 49 张牌。
【数据范围】
对于所有测试数据,保证:1≤n≤52,输入的n个字符串每个都代表一张合法的扑克牌,即字符串长度为 2,且第一个字符为D C H S中的某个字符,第二个字符为A 2 3 4 5 6 7 8 9 T J Q K中的某个字符


特殊性质 A:保证输入的 n 张牌两两不同。
特殊性质 B:保证所有牌按照点数从小到大依次输入,点数相同时按照方片、草花、红桃、黑桃的顺序依次输入。

#include<bits/stdc++.h>
using namespace std;

int f(char a){
	if(a=='D') return 1;
	if(a=='C') return 2;
	if(a=='H') return 3;
	if(a=='S') return 4;
}
int h(char b){
	if(b=='A') return 1;
	if(b=='2') return 2;
	if(b=='3') return 3;
	if(b=='4') return 4;
	if(b=='5') return 5;
	if(b=='6') return 6;
	if(b=='7') return 7;
	if(b=='8') return 8;
	if(b=='9') return 9;
	if(b=='T') return 10;
	if(b=='J') return 11;
	if(b=='Q') return 12;
	if(b=='K') return 13;
}
int b[15][15];
int main(){
	int n,cnt=0;
	string a;
	cin>>n;
	for(int i=0; i<n; i++){
		cin>>a;
		b[f(a[0])][h(a[1])]++;
	}
	for(int i=1; i<=4; i++){
		for(int j=1; j<=13; j++){
			if(b[i][j]>0){
				cnt++;
			}
		}
	}
	cout<<52-cnt;
	return 0;
}

T2 地图探险(explore)

时间限制:1000毫秒

内存限制:512MB

题目描述 Description

  小 A 打算前往一片丛林去探险。丛林的地理环境十分复杂,为了防止迷路,他先派遣了一个机器人前去探路。
  丛林的地图可以用一个 n 行 m 列的字符表来表示。我们将第 i 行第 j 列的位置的坐标记作 ( i , j ) (1 ≤ i ≤ n, 1 ≤ j ≤ m)。如果这个位置的字符为 x,即代表这个位置上有障碍,不可通过。反之,若这个位置的字符为 . ,即代表这个位置是一片空地,可以通过。
  这个机器人的状态由位置和朝向两部分组成。其中位置由坐标 (x, y)(1 ≤ x ≤ n, 1 ≤ y ≤ m) 刻画,它表示机器人处在地图上第 x 行第 y 列的位置。而朝向用一个 0 ∼ 3 的整数 d 表示,其中 d = 0 代表向东,d = 1 代表向南,d = 2 代表向西,d = 3 代表向北。
  初始时,机器人的位置为 (x0, y0),朝向为 d0。保证初始时机器人所在的位置为空地。 接下来机器人将要进行 k 次操作。每一步,机器人将按照如下的模式操作:

  1. 假设机器人当前处在的位置为 (x, y),朝向为 d。则它的方向上的下一步的位置 (x′, y′) 定义如下:若 d = 0,则令 (x′, y′) = (x, y + 1),若 d = 1,则令 (x′, y′) = (x + 1, y),若 d = 2,则令 (x′, y′) =(x, y − 1),若 d = 3,则令(x′, y′) = (x − 1, y)。
  2. 接下来,机器人判断它下一步的位置是否在地图内,且是否为空地。具体地说,它判断 (x′, y′) 是否满足 1 ≤ x′ ≤ n, 1 ≤ y′ ≤ m,且 (x′, y′) 位置上是空地。如果条件成立,则机器人会向前走一步。它新的位置变为 (x′, y′),且朝向不变。如果条件不成立,则它会执行“向右转”操作。也就是说,令 d′ = (d + 1) mod 4(即 d + 1 除以 4 的余数),且它所处的位置保持不变,但朝向由 d 变为 d′。
      小 A 想要知道,在机器人执行完 k 步操作之后,地图上所有被机器人经过的位置(包括起始位置)有几个。

输入描述 Input Description

本题有多组测试数据。
输入的第一行包含一个正整数 T,表示数据组数。
接下来包含 T 组数据,每组数据的格式如下:
第一行包含三个正整数 n, m, k。其中 n, m 表示地图的行数和列数,k 表示机器人执行操作的次数。
第二行包含两个正整数 x0, y0 和一个非负整数 d0。
接下来 n 行,每行包含一个长度为 m 的字符串。保证字符串中只包含 x 和 . 两个字符。其中,第 x 行的字符串的第 y 个字符代表的位置为 (x, y)。这个位置是 x 即代表它是障碍,否则代表它是空地。数据保证机器人初始时所在的位置为空地。

输出描述 Output Description

对于每组数据:输出一行包含一个正整数,表示地图上所有被机器人经过的位置(包括起始位置)的个数。

样例输入 Sample Input

2 1 5 4 1 1 2 ....x 5 5 20 1 1 0 ..... .xxx. .x.x. ..xx. x....

样例输出 Sample Output

3 13

数据范围及提示 Data Size & Hint

该样例包含两组数据。
对第一组数据,机器人的状态以如下方式变化:

  1. 初始时,机器人位于位置 (1, 1),方向朝西(用数字 2 代表)。
  2. 第一步,机器人发现它下一步的位置 (1, 0) 不在地图内,因此,它会执行“向右
    转”操作。此时,它的位置仍然为 (1, 1),但方向朝北(用数字 3 代表)。
  3. 第二步,机器人发现它下一步的位置 (0, 1) 不在地图内,因此,它仍然会执行“向
    右转”操作。此时,它的位置仍然为 (1, 1),但方向朝东(用数字 0 代表)。
  4. 第三步,机器人发现它下一步的位置 (1, 2) 在地图内,且为空地。因此,它会向
    东走一步。此时,它的位置变为 (1, 2),方向仍然朝东。
  5. 第四步,机器人发现它下一步的位置 (1, 3) 在地图内,且为空地。因此,它会向
    东走一步。此时,它的位置变为 (1, 3),方向仍然朝东。
    因此,四步之后,机器人经过的位置有三个,分别为 (1, 1),(1, 2),(1, 3)。

对第二组数据,机器人依次执行的操作指令为:向东走到 (1, 2),向东走到 (1, 3),
向东走到 (1, 4),向东走到 (1, 5),向右转,向南走到 (2, 5),向南走到 (3, 5),向南走到
(4, 5),向南走到 (5, 5),向右转,向西走到 (5, 4),向西走到 (5, 3),向西走到 (5, 2),向
右转,向北走到 (4, 2),向右转,向右转,向南走到 (5, 2),向右转,向右转。

对于所有测试数据,保证:1 ≤ T ≤ 5, 1 ≤ n, m ≤ 103, 1 ≤ k ≤ 106, 1 ≤ x0 ≤ n, 1 ≤y0 ≤ m, 0 ≤ d0 ≤ 3,且机器人的起始位置为空地。

#include<bits/stdc++.h>
using namespace std;
char mapp[1005][1005];
bool f[1005][1005];
int dx[]={0,1,0,-1},dy[]={1,0,-1,0};
int T,n,m,k,xx,yy,dd;//n(i)行 m(j)列 
int main(){
	cin>>T;
	while(T--){
		cin>>n>>m>>k;
		cin>>xx>>yy>>dd;
		xx--,yy--;\
		for(int i=0; i<n; i++){
			for(int j=0; j<m; j++){
				cin>>mapp[i][j];
				f[i][j]=false;
			}
		}
		int cnt=0;
		if (!f[xx][yy]) {
            f[xx][yy] = true;
            cnt++;
        }
		while(k--){
				int nx=xx+dx[dd];
				int ny=yy+dy[dd];
				if(nx>=0&&ny>=0&&nx<n&&ny<m&&mapp[nx][ny]=='.'){
					xx=nx;
					yy=ny;
					if(f[xx][yy]==false){
						f[xx][yy]=true;
						cnt++;
					}
				}
				else{
					dd=(dd+1)%4;
				}
				
		}
		cout<<cnt<<endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值