提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。
一、SIFT算法特点
1、具有较好的稳定性和不变性,能够适应旋转、尺度缩放、亮度的变化,能在一定程度上不受视角变化、仿射变换、噪声的干扰。
2、区分性好,能够在海量特征数据库中进行快速准确的区分信息进行匹配
3、多量性,就算只有单个物体,也能产生大量特征向量
4、高速性,能够快速的进行特征向量匹配
5、可扩展性,能够与其它形式的特征向量进行联合
二、SIFT算法实质
在不同的尺度空间上查找关键点,并计算出关键点的方向。
三、SIFT算法实现特征匹配主要有以下流程:
1、特征点位置和尺度的提取:
在 特征提取 步骤下,其主要应用了图像金字塔 和 图像尺度空间
1.图像金字塔
将图像经过一系列的降采样,不同大小的图片其空间形状像是金字塔,因此得名。
2. 图像尺度空间
将图像经过不同尺度(σ)的高斯卷积算子,进而得到不同高斯尺度(σ)下的图像
具体步骤如下:
1.将相同size的相邻高斯尺度之间的灰度图像进行减法运算,进而得到高斯差分图像。可以看得出其边缘特征比较明显。
2.然后在高斯差分图像上检测特征点。
- 假若一个像素点比其 周围8个点 + 相邻两个高斯差分图像上对应的18个点 的像素值(共26个)都大或都小,则该点为特征点。
- 该特征点的尺度信息来自于 1. 检测出特征点所在的高斯差分图像,其图像的与原图的长宽比例 2. 检测出特征点所在的高斯差分图像的高斯尺度
2、特征点方向的提取
选择好特征点之后,还需要提取出特征点特方向信息。在特征点所在的 系数*高斯尺度(σ)为长宽的正方形区域内,求像素点之间梯度变化的方向。
将方向划分到以45°为间隔的8个方向内 进行统计, 最多的方向则为该特征点的主方向
3、特征提取汇总
SIFT算法 有了特征点的位置、尺度、方向三个信息,之后再依据尺度、方向对特征点进行描述,则特征点的特征向量将具有尺度不变性和旋转不变性。
4、特征描述
依据尺度、方向对特征点进行描述。
尺度信息体现在特征点的描述区域范围,是系数*尺度
方向信息:
以特征点的主方向作为特征描述的X轴,在其坐标系的四个象限上分别划出2*2个小格子,每个小格子分别对格子中的灰度变化方向进行统计。
每个小格子统计出来一个按照8个方向划分,8个方向的数量 归一化后的结果,成为一个8维的向量。
一共4个象限即44个小格子, 44*8=128, 最终SIFT的特征点将用128维向量表示。
(如果主方向为45°的倍数,按其作为主方向去描述后,有些位置的灰度值和方向需要通过插值得到)
4、特征匹配
考虑到特征向量中的元素为浮点数,向量之间的距离计算采用欧式距离进行计算。
当距离小于某一阈值时,认为两个特征点匹配上了,即匹配成功。
四、提取关键点可视化
from numpy import loadtxt, array, concatenate, zeros, dot, arccos
from numpy.linalg import linalg
from pylab import *
from PIL import Image
from numpy import *
import os
from numpy import loadtxt, arange, cos, sin, pi
def process_image(imagename, resultname, params="--edge-thresh 10 --peak-thresh 5"):
"""处理一幅图像,然后将结果保存在文件中"""
if imagename[-3:] != 'pgm':
# 创建一个pgm文件
im = Image.open(imagename).convert('L')
im.save('tmp.pgm')
imagename = 'tmp.pgm'
cmmd = str("C:/Users/Administrator/Desktop/vlfeat-0.9.20-bin/vlfeat-0.9.20/bin/win64/sift.exe " + imagename + " --output=" + resultname + " " + params)
os.system(cmmd)
print('processed', imagename, 'to', resultname)
def read_features_from_file(filename):
"""读取特征值属性值,然后将其以矩阵形式返回"""
f = loadtxt(filename)
return f[:, :4], f[:, 4:] # 特征位置,描述子
def plot_features(im, locs, circle=False):
"""显示带有特征的图像
输入:im(数组图像),locs(每个特征的行、列、尺度和方向角度)"""
def draw_circle(c,r):
t = arange(0,1.01,.01)*2*pi
x = r*cos(t) + c[0]
y = r*sin(t) + c[1]
plot(x,y,'b',linewidth=2)
imshow(im)
if circle:
for p in locs:
draw_circle(p[:2],p[2])
else:
plot(locs[:,0],locs[:,1],'ob')
axis('off')
return
def match(desc1, desc2):
"""对于第一幅图像的每个描述子,选取其在第二幅图像中的匹配
输入:desc1(第一幅图像中的描述子),desc2(第二幅图像中的描述子)"""
desc1 = array([d/linalg.norm(d) for d in desc1])
desc2 = array([d/linalg.norm(d) for d in desc2])
dist_ratio = 0.6
desc1_size = desc1.shape
matchscores = zeros((desc1_size[0],1), 'int')
desc2t = desc2.T #预先计算矩阵转置
for i in range(desc1_size[0]):
dotprods = dot(desc1[i,:], desc2t) #向量点乘
dotprods = 0.9999*dotprods
# 反余弦和反排序,返回第二幅图像中特征的索引
index = argsort(arccos(dotprods))
# 检查最近邻的角度是否小于dist_ratio乘以第二近邻的角度
if arccos(dotprods)[index[0]] < dist_ratio * arccos(dotprods)[index[1]]:
matchscores[i] = int(index[0])
return matchscores
def match_twosided(desc1,decs2):
"""双向对称版本的match"""
matches_12 = match(desc1, decs2)
matches_21 = match(decs2, decs2)
ndx_12 = matches_12.nonzero()[0]
# 去除不对称匹配
for n in ndx_12:
if matches_21[int(matches_12[n])] != n:
matches_12[n] = 0
return matches_12
def appendimages(im1, im2):
"""返回将两幅图像并排拼接成的一幅新图像"""
# 选取具有最少行数的图像,然后填充足够的空行
row1 = im1.shape[0]
row2 = im2.shape[0]
if row1 < row2:
im1 = concatenate((im1,zeros((row2-row1,im1.shape[1]))), axis=0)
elif row1 > row2:
im2 = concatenate((im2,zeros((row1-row2,im2.shape[1]))), axis=0)
# 如果这些情况都没有,那么他们的行数相同,不需要进行填充
return concatenate((im1,im2), axis=1)
if __name__ == '__main__':
imname = 'image/yankui1.jpg'
im1 = array(Image.open(imname).convert('L'))
process_image(imname, 'yankui1.sift')
l1, d1 = read_features_from_file('image/yankui1.sift')
figure()
gray()
plot_features(im1, l1, circle=True)
show()
五、匹配地理标记图像
1.源码
源码如下(示例):
from pylab import *
from PIL import Image
from PCV.localdescriptors import sift
from PCV.tools import imtools
import pydot
""" This is the example graph illustration of matching images from Figure 2-10.
To download the images, see ch2_download_panoramio.py."""
download_path = "./image" # set this to the path where you downloaded the panoramio images
path = "./image" # path to save thumbnails (pydot needs the full system path)
imlist = imtools.get_imlist(download_path)
nbr_images = len(imlist)
featlist = [imname[:-3] + 'sift' for imname in imlist]
for i, imname in enumerate(imlist):
sift.process_image(imname, featlist[i])
matchscores = zeros((nbr_images, nbr_images))
for i in range(nbr_images):
for j in range(i, nbr_images): # only compute upper triangle
print('comparing ', imlist[i], imlist[j])
l1, d1 = sift.read_features_from_file(featlist[i])
l2, d2 = sift.read_features_from_file(featlist[j])
matches = sift.match_twosided(d1, d2)
nbr_matches = sum(matches > 0)
print('number of matches = ', nbr_matches)
matchscores[i, j] = nbr_matches
print("The match scores is: \n", matchscores)
# copy values
for i in range(nbr_images):
for j in range(i + 1, nbr_images): # no need to copy diagonal
matchscores[j, i] = matchscores[i, j]
#可视化
threshold = 2 # min number of matches needed to create link
g = pydot.Dot(graph_type='graph') # don't want the default directed graph
for i in range(nbr_images):
for j in range(i + 1, nbr_images):
if matchscores[i, j] > threshold:
# first image in pair
im = Image.open(imlist[i])
im.thumbnail((100, 100))
filename = path + str(i) + '.png'
im.save(filename) # need temporary files of the right size
g.add_node(pydot.Node(str(i), fontcolor='transparent', shape='rectangle', image=filename))
# second image in pair
im = Image.open(imlist[j])
im.thumbnail((100, 100))
filename = path + str(j) + '.png'
im.save(filename) # need temporary files of the right size
g.add_node(pydot.Node(str(j), fontcolor='transparent', shape='rectangle', image=filename))
g.add_edge(pydot.Edge(str(i), str(j)))
g.write_png('whitehouse.png')
2.运行结果
imag文件夹中放入同一场景的序列图像(如下):
ps:场景为集美大学陈延奎图书馆
运行后将图像进行两两匹配,可视化后如图所示:
总结
匹配地理标记图像可视化的实验结果可以看出,匹配连接的顺序大致正确,
SIFT算法的优缺点:
SIFT 算法在图片的不变特征提取领域拥有非常大的优点,但仍存在个别缺点:
实时性偏低,运行速度不快
有些情况下特征点较少
对边缘光滑的目标图片无法准确提取特征点等缺点
对模糊的图片和边缘平滑的图片,检测出特征点过少
参考:
SIFT算法详解:https://blog.csdn.net/zddblog/article/details/7521424