Kylin自动合并机制

本文探讨了在Kylin中处理大量Segment带来的查询性能问题,通过合并Segment、自动合并策略以及调整时间范围来提升效率。重点介绍了手动和自动合并Segment的方法,以及在数据持续更新时如何避免重复计算,以降低执行成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A1 why

增量构建的Cube每天都可能有新的增量。日益剧增,Cube可能会包含上百个Segment,查询性能会受到影响。

A2 解决

合并segment:可手动,可自动。

在Web GUI中选中需要进行Segments合并的Cube,单击
Action→Merge,然后在对话框中选中需要合并的Segment,可以同时合并多个Segment,但是这些Segment必须是连续的。

A3 自动合并

cFyRwd.png

A4 数据持续更新

数仓里面的数据拿取的是数据库中某个时间的状态数据,不可能像Mysql中数据一样频繁的更新。

因为数据拉取的过程是有延时性的。T+1业务中,每日12点之后开始计算前一天的数据。

然后数据已经随着时间流式计算了。但是数据库中同步的数据其实是错误或者还需要修改的数据。

那么从kylin的角度来看,把对应日期的数据重新同步后重新计算。

对应日增情况,就是根据时间容忍度N,刷新前N个segment的数据,build新增的segment数据,如果设置了自动合并机制,或者不小心进行了不合适的合并情况下,可能造成大量数据的重复计算。

在这里插入图片描述

当最新数据进来时,刷新过去7天的数据,但是,这数据中有有一部分在之前的segment(94)中。有大量数据重复计算了。

因为segment是一个整体,无法拆分。所以只能全部更新达到数据持续更新的效果。

缺点:

  • 日增数据建立segment。1天一个,在不合适的合并条件下,可能产生比较差的执行效率。

解决:

  • 将时间范围放大,将segment的范围调整成N或者N+1, 以7天为例,持续更新7天的数据。

在这里插入图片描述

手动刷新:refresh

在这里插入图片描述

问题:

  • 即使将时间范围放大,但是到达一定的临界点也会导致要refresh很多数据,使执行效率变差,这时可以采用手动合并。

A5 参考文献

kylin权威指南

### 回答1: 开源大数据ETL(Extract-Transform-Load)开发流程是将各种源数据从不同的数据源(如数据库、文件等)中提取出来,经过转换和加工后加载到目标数据仓库或数据湖中的过程。以下是开源大数据ETL开发流程的简要介绍: 1. 数据需求分析:根据业务需求,确定需要提取、转换和加载的数据,分析其结构和特征。 2. 数据源准备:选择适当的数据源,并进行连接、授权等相关设置,以保证能够提取所需的数据。 3. 数据提取:使用相应的开源大数据ETL工具(如Apache Nifi、Talend等),从数据源中提取所需数据,并将其暂存到缓冲区中。 4. 数据清洗和转换:对提取的数据进行清洗和转换,包括数据格式转换、去除重复记录、填充缺失值、数据标准化等。 5. 数据加载:将清洗和转换后的数据加载到目标数据仓库或数据湖中,保证数据的完整性和一致性。 6. 错误处理和监控:在数据处理过程中,监控和处理可能出现的错误,如数据源连接失败、错误数据处理等,保证数据流的稳定和正确。 7. 数据验证和测试:对加载到目标数据仓库或数据湖中的数据进行验证和测试,确保数据的准确性和完整性。 8. 调度和自动化:设置自动化调度,定期执行ETL流程,确保数据的及时更新和同步。 9. 日志记录和性能优化:记录ETL流程的日志,并进行性能优化,如调整数据提取的并发数、增加缓存大小等,以提高ETL过程的效率和稳定性。 综上所述,开源大数据ETL开发流程包括数据需求分析、数据源准备、数据提取、数据清洗和转换、数据加载、错误处理和监控、数据验证和测试、调度和自动化、日志记录和性能优化等步骤,通过这些步骤,我们可以实现对各种数据进行ETL处理,以满足业务需求。 ### 回答2: 开源大数据ETL(Extract-Transform-Load)开发流程是指在使用开源技术和工具进行大数据处理的过程中,从数据抽取到转换再到加载的一系列操作流程。具体包括以下几个阶段: 1. 数据抽取(Extract):从源系统中获取数据,可以通过不同的方式进行数据抽取,包括批量导入、实时抓取、API接口等。在这个阶段,需要考虑数据的来源、数据格式、数据量和抽取策略等。 2. 数据转换(Transform):将抽取的数据进行清洗、整理、加工和转换操作,以适应目标系统的需求。数据转换可以包括数据过滤、字段映射、数据合并等操作,可以使用开源的大数据处理框架(如Apache Spark、Apache Flink)进行数据转换。 3. 数据加载(Load):将转换后的数据加载到目标系统中,目标系统可以是数据仓库、数据湖或者其他数据存储设施。数据加载可以使用开源的分布式存储系统(如Apache Hadoop、Apache HBase)进行存储和管理。 在开源大数据ETL开发流程中,还需要考虑以下几个方面: 1. 算法和模型选择:根据实际需求选择合适的算法和模型,以实现数据的清洗、转换和加载。 2. 数据质量控制:确保抽取的数据质量,进行数据质量检测和修复,以保证后续数据处理的准确性。 3. 任务调度和监控:建立定时调度机制,监控整个ETL流程的运行情况,及时发现和解决问题。 4. 数据安全和权限管理:对ETL过程中涉及的数据进行权限控制,保障数据的安全性。 总结起来,开源大数据ETL开发流程主要包括数据抽取、数据转换和数据加载三个阶段,同时需要考虑算法和模型选择、数据质量控制、任务调度和监控、数据安全和权限管理等方面。通过合理设计和实施ETL流程,可以从海量的原始数据中提取出有用的信息,为业务决策和数据分析提供支持。 ### 回答3: 开源大数据ETL(Extract-Transform-Load)开发流程是指使用开源工具和技术进行大数据ETL任务的开发过程。下面是一个典型的开源大数据ETL开发流程: 1. 分析需求:首先,需要明确ETL任务的需求和目标。确定要处理的数据类型、数据源和目标数据仓库等信息。 2. 数据抽取:使用开源工具(例如Apache Nifi、Apache Flume)从源系统中提取数据,并将数据存储到临时位置或数据湖中。 3. 数据清洗和转换:对抽取得到的数据进行清洗和转换,以适合目标系统或数据需求。可以使用开源工具(例如Apache Spark、Apache Pig)进行数据清洗、过滤、去重、格式转换等操作。 4. 数据加载:将清洗和转换后的数据加载到目标系统或数据仓库中。可以使用开源工具(例如Apache Hive、Apache HBase)进行数据加载操作。 5. 数据质量和验证:对加载到目标系统的数据进行质量检查和验证,确保数据的准确性和完整性。可以使用开源工具(例如Apache Kylin、Apache Atlas)进行数据质量检查和元数据管理。 6. 调度和监控:设置ETL任务的调度计划,确保任务的自动执行。可以使用开源工具(例如Apache Oozie、Apache Airflow)进行任务调度和监控,同时可以使用开源工具(例如Apache Zeppelin、Grafana)对任务执行情况进行活动监控和可视化展示。 7. 故障处理和优化:在ETL任务运行过程中,可能会出现故障或性能问题。需要对任务进行故障处理和优化。可以使用开源工具(例如Apache Kafka、Apache ZooKeeper)进行故障处理和性能优化。 8. 文档和分享:最后,需要编写ETL任务的文档,包括任务架构、代码、配置等信息,并与团队成员分享经验和经验教训。 以上是开源大数据ETL开发流程的基本步骤。根据具体的需求和技术栈,可能会有所不同。开源工具的选择和配置也会因具体情况而有所差异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CoreDao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值