一张图就是一个故事,用 SceneXplain 讲个好故事

SceneXplain 是一款先进的图像描述工具,针对复杂图像提供详细、生动的描述,弥补了现有解决方案在处理多物体、互动和细节方面的不足。与 Midjourney 和其他工具相比,SceneXplain 生成的描述更丰富、更具上下文,适用于优化 SEO、提升视觉叙事和增强无障碍体验。其多语言支持和抗噪声能力使其在各种场景下表现出色。
摘要由CSDN通过智能技术生成

17703a1009994e2d7b24b24026a14a7a.gif

精准的图像描述不仅可以让人们更容易理解图像背后的故事和信息,还可以让图像更易于被检索和识别。然而,对于那些复杂的图像来说,写出既准确又详细的描述实在是件非常困难的事情。

图像描述算法的演变

所谓 Image Caption(图像描述)任务,就是让计算机能够根据一张图片自动生成相应的文字描述。在早期的模型,比如 OpenAI 的 CLIP,利用了无监督学习和微调技术,通过海量的图片和文本数据集进行了训练,理解了图片和文本间的联系,从而能够生成有意义的图像描述。

后来,一种名为 BLIP-2 的算法应运而生,它采用了更高效的预训练策略。BLIP-2 利用现成的冻结预训练图像编码器和大型语言模型,通过一个轻量级的查询式 Transformer 来连接不同的模态。不仅减少了训练参数,还保证了各种视觉-语言任务上取得 SOTA 表现。

得益于多模态技术的不断发展,图像描述这个需要结合 CV 和 NLP 的老大难问题在近些年里迈出了一大步。但直到现在,大部分 AI 生成的图像描述都比较笼统简短,难以充分展示图像的丰富内涵。尤其为复杂图像所生成的文本描述在准确性方面仍存在明显不足,更别提那些涉及多个物体、互动和复杂细节的图像了。

现有图像描述解决方案面临的挑战

1. 过于简化或空泛的论述

如图,大多数图像字幕算法给出的是“一个人和一条狗”,看似准确,但其这张图里有非常丰富的物体和故事。他们在外面做什么,他们为什么会露营,右边的背包有什么暗示吗?

baca8e2a86d0f6ab2feb3ee641de53d8.png
图源《First Dog, 10th Man to Walk Around the World》

2. 缺少细微差别和关系

如图,简单地给出“对象 A 和对象 B”的描述是远远不够的,两者间的空间关系传达了截然不同的内涵。

fa7e04b6167e2e14e71b323243801694.png
图源《MESSRS: A model-based 3D system for of recognition, semantic annotation and calculating the spatial relationships of a factory’s digital facilities》

3. 处理噪音和糟糕的图像质量

如图,中间显示的“攻击”对比扰动原来照片,尽管人类眼睛瞟一眼就知道和原始图片没变化,但图像描述算法依然标错了分类。

c46c343b55a83a2cffc76b71a3d00a2f.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值