《Advanced RAG》-12-增进RAG的全局理解(一)

总结

本文介绍了四种改进RAG(Retrieval-Augmented Generation)模型的方法,以增强对文档或语料库的全面理解,并详细阐述了每种方法的理论基础、实现过程和实验结果。

摘要

本文详细介绍了四种增强全局理解能力的RAG方法:RAPTORGraph RAGHippoRAGspRAG

  • RAPTOR使用树状结构组织文本块,通过聚类和总结生成多层次摘要,以便于检索信息。
  • Graph RAG构建基于图的文本索引,利用知识图谱和社群检测技术,通过查询时的社群摘要来理解整个文本语料。
  • HippoRAG受人脑记忆机制启发,结合LLM(Large Language Models)、知识图谱和个性化PageRank算法,模拟人类记忆的模式分离和完成功能。
  • spRAG通过自动上下文注入和相关片段提取技术,提高了标准RAG系统的性能。本文还对这些方法进行了比较,讨论了它们的数据结构、检索算法、性能以及可定制性

现实世界中的许多重要任务,包括科学文献综述、法律案件简报和医疗诊断,都需要跨块或跨文档的知识理解。

现有的 RAG 方法无法帮助 LLMs 完成要求理解跨语块边界信息的任务,因为每个语块都是独立编码的。

本文将介绍四种创新方法,以增强对文档或语料库的全面理解,以及从中获得的启示和思考。

这四种方法如下:

  1. RAPTOR:这是一个基于树的检索系统,可递归嵌入、聚类和总结文本块。
  2. Graph RAG:该方法结合了知识图谱生成、社群检测、RAG 和查询式摘要(QFS),有助于全面了解整个文本语料库。
  3. HippoRAG:这一检索框架从人类长期记忆的海马索引理论中汲取灵感。它与 LLM、知识图谱和个性化 PageRank 算法协作。
  4. spRAG:该方法通过两项关键技术,即自动上下文和相关片段提取(RSE),提高了标准 RAG 系统的性能。

RAPTOR:树状组织检索的递归抽象处理技术

RAPTOR 是一种新颖的基于树的检索系统,设计用于递归嵌入、聚类和总结文本片段。它自下而上地构建一棵树,提供不同层次的摘要。

在推理过程中,RAPTOR 会从这棵树中检索信息,并将更长文档中的数据以不同的抽象程度纳入其中。

关键思路

RAPTOR 采用递归方法,根据嵌入将文本块组织成群。它为每个簇生成摘要,自下而上地构建一棵树。这一过程如图 1 所示。

在这里插入图片描述

下面我们将深入探讨与图 1 有关的具体主题:

  • 构建 RAPTOR 树
  • 检索过程

构建 RAPTOR 树

文本分块

将检索语料分成连续的Chunk,每块 100 个token。如果一个Chunk超过 100 个token,RAPTOR 会将整个句子转移到下一个Chunk,以保持上下文和语义的连贯性。

def split_text(
    text: str, tokenizer: tiktoken.get_encoding("cl100k_base"), max_tokens: int, overlap: int = 0):
    """
    Splits the input text into smaller chunks based on the tokenizer and maximum allowed tokens.
    
    Args:
        text (str): The text to be split.
        tokenizer (CustomTokenizer): The tokenizer to be used for splitting the text.
        max_tokens (int): The maximum allowed tokens.
        overlap (int, optional): The number of overlapping tokens between chunks. Defaults to 0.
    
    Returns:
        List[str]: A list of text chunks.
    """
    ...
    ...        
        # If adding the sentence to the current chunk exceeds the max tokens, start a new chunkelif current_length + token_count > max_tokens:
            chunks.append(" ".join(current_chunk))
            current_chunk = current_chunk[-overlap:] if overlap > 0 else []
            current_length = sum(n_tokens[max(0, len(current_chunk) - overlap):len(current_chunk)])
            current_chunk.append(sentence)
            current_length += token_count
    ...
    ...
嵌入

使用 Sentence-BERT 生成这些语块的密集向量表示。

这些块及其相应的嵌入构成了 RAPTOR 树形结构的叶节点。

class TreeBuilder:
    """
    The TreeBuilder class is responsible for building a hierarchical text abstraction
    structure, known as a "tree," using summarization models and
    embedding models.
    """
    ...
    ...
    def build_from_text(self, text: str, use_multithreading: bool = True) -> Tree:
        """Builds a golden tree from the input text, optionally using multithreading.

        Args:
            text (str): The input text.
            use_multithreading (bool, optional): Whether to use multithreading when creating leaf nodes.
                Default: True.

        Returns:
            Tree: The golden tree structure.
        """
        chunks = split_text(text, self.tokenizer, self.max_tokens)

        logging.info("Creating Leaf Nodes")

        if use_multithreading:
            leaf_nodes = self.multithreaded_create_leaf_nodes(chunks)
        else:
            leaf_nodes = {}
            for index, text in enumerate(chunks):
                __, node = self.create_node(index, text)
                leaf_nodes[index] = node

        layer_to_nodes = {0: list(leaf_nodes.values())}

        logging.info(f"Created {len(leaf_nodes)} Leaf Embeddings")
        ...
        ...
聚类方法

聚类对于构建 RAPTOR 树至关重要,因为它能将文本段落组织成连贯的组。通过将相关内容集中在一起,可以增强后续的检索过程。

RAPTOR 的聚类方法具有以下特点:

  1. 它采用高斯混合物模型(GMM)和 UMAP 维度缩减技术进行软聚类。
  2. 可以修改 UMAP 参数,以识别全局和局部集群。
  3. 贝叶斯信息标准(BIC)用于模型选择,以确定最佳聚类数量。

这种聚类方法的核心是一个节点可以属于多个聚类。这样就不需要固定数量的类别,因为一个文本片段往往包含不同主题的信息,从而确保将其纳入多个摘要中。

在使用 GMM 对节点进行聚类后,每个聚类中的节点将由 LLM 进行总结。这一过程将大块内容转化为所选节点的简洁、连贯的摘要。

在执行过程中,使用 gpt-3.5 turbo 生成摘要。相应的提示如图 2 所示。

在这里插入图片描述

构建算法

至此,我们已经获得了整棵树的叶节点,并确定了聚类算法。

如图 1 中部所示,组合在一起的节点构成同级节点,而父节点则包含该特定群组的摘要。生成的摘要包括树中的非叶节点。

汇总后的节点被重新嵌入,嵌入、聚类和汇总的过程一直持续到进一步聚类不再可行为止。这样,原始文件就形成了一个结构化的多层树状表示。

相应的代码如下所示。

class ClusterTreeConfig(TreeBuilderConfig):
    ...
    ...
    def construct_tree(
        self,
        current_level_nodes: Dict[int, Node],
        all_tree_nodes: Dict[int, Node],
        layer_to_nodes: Dict[int, List[Node]],
        use_multithreading: bool = False,
    ) -> Dict[int, Node]:
        ...
        ...

        for layer in range(self.num_layers):

            new_level_nodes = {}

            logging.info(f"Constructing Layer {layer}")

            node_list_current_layer = get_node_list(current_level_nodes)

            if len(node_list_current_layer) <= self.reduction_dimension + 1:
                self.num_layers = layer
                logging.info(
                    f"Stopping Layer construction: Cannot Create More Layers. Total Layers in tree: {layer}"
                )
                break

            clusters = self.clustering_algorithm.perform_clustering(
                node_list_current_layer,
                self.cluster_embedding_model,
                reduction_dimension=self.reduction_dimension,
                **self.clustering_params,
            )

            lock = Lock()

            summarization_length = self.summarization_length
            logging.info(f"Summarization Length: {summarization_length}")

            ...
            ...

检索流程

有了 RAPTOR 树之后,应该如何使用它进行查询?

查询有两种方式:基于树遍历和基于折叠树,如图 3 所示。

在这里插入图片描述

树遍历从树的根层开始,根据节点与查询向量的余弦相似度检索前 k 节点(本例中为前 1 节点)。在每一层,它都会从上一层的前 k 节点的子节点中检索前 k 节点,相应的代码如下所示。

class TreeRetriever(BaseRetriever):
    ...
    ...
    def retrieve_information(
        self, current_nodes: List[Node], query: str, num_layers: int) -> str:
        """
        Retrieves the most relevant information from the tree based on the query.

        Args:
            current_nodes (List[Node]): A List of the current nodes.
            query (str): The query text.
            num_layers (int): The number of layers to traverse.

        Returns:
            str: The context created using the most relevant nodes.
        """

        query_embedding = self.create_embedding(query)

        selected_nodes = []

        node_list = current_nodes

        for layer in range(num_layers):

            embeddings = get_embeddings(node_list, self.context_embedding_model)

            distances = distances_from_embeddings(query_embedding, embeddings)

            indices = indices_of_nearest_neighbors_from_distances(distances)

            if self.selection_mode == "threshold":
                best_indices = [
                    index for index in indices if distances[index] > self.threshold
                ]

            elif self.selection_mode == "top_k":
                best_indices = indices[: self.top_k]

            nodes_to_add = [node_list[idx] for idx in best_indices]

            selected_nodes.extend(nodes_to_add)

            if layer != num_layers - 1:

                child_nodes = []

                for index in best_indices:
                    child_nodes.extend(node_list[index].children)

                # take the unique values
                child_nodes = list(dict.fromkeys(child_nodes))
                node_list = [self.tree.all_nodes[i] for i in child_nodes]

        context = get_text(selected_nodes)
        return selected_nodes, context

相比之下,折叠树将树压缩为单层,并检索节点,直到达到标记的阈值数量,同样是基于与查询向量的余弦相似度,相应的代码如下所示。

class TreeRetriever(BaseRetriever):
    ...
    ...
    def retrieve_information_collapse_tree(self, query: str, top_k: int, max_tokens: int) -> str:
        """
        Retrieves the most relevant information from the tree based on the query.

        Args:
            query (str): The query text.
            max_tokens (int): The maximum number of tokens.

        Returns:
            str: The context created using the most relevant nodes.
        """

        query_embedding = self.create_embedding(query)

        selected_nodes = []

        node_list = get_node_list(self.tree.all_nodes)

        embeddings = get_embeddings(node_list, self.context_embedding_model)

        distances = distances_from_embeddings(query_embedding, embeddings)

        indices = indices_of_nearest_neighbors_from_distances(distances)

        total_tokens = 0for idx in indices[:top_k]:

            node = node_list[idx]
            node_tokens = len(self.tokenizer.encode(node.text))

            if total_tokens + node_tokens > max_tokens:
                break

            selected_nodes.append(node)
            total_tokens += node_tokens

        context = get_text(selected_nodes)
        return selected_nodes, context

那么,哪种方法更好呢?

RAPTOR 进行了比较,如图 4 所示。

在这里插入图片描述

如图 4 所示,包含 2000 个标记的折叠树结果最好。这是因为它比树遍历提供了更大的灵活性。具体来说,通过同时搜索所有节点,它可以针对给定问题检索到适当粒度的信息。

图 5 展示了 RAPTOR 如何检索与灰姑娘故事相关的两个查询信息:"故事的中心主题是什么?"和 "灰姑娘是如何找到幸福结局的?

在这里插入图片描述

突出显示的节点表示 RAPTOR 的选择,而箭头则指向 DPR(密集通道检索)的叶节点。重要的是,RAPTOR 提供的上下文通常包括 DPR 直接或在更高层摘要中检索到的信息。

Graph RAG

Graph RAG 利用 LLM 分两个阶段构建基于图的文本索引:

  • 最初,它从源文档中导出一个知识图谱。
  • 随后,它会为所有紧密相连的实体组生成社区摘要。

对于一个查询,每个社区摘要都会给出一个部分回复。然后将这些部分回复汇总,形成最终的全局答案。

概述

图 6 显示了图形 RAG 的流程。紫色方框表示索引操作,绿色方框表示查询操作。

在这里插入图片描述

Graph RAG 采用与数据集领域相关的 LLM 提示来检测、提取和汇总节点(如实体)、边(如关系)和属性(如年龄)。

社群检测用于将图划分为元素组(节点、边、属性),LLM 可以在索引和查询时对这些元素组进行总结。

针对特定查询的全局答案,通过对与该查询相关的所有社区摘要进行最后一轮以查询为重点的摘要得出的。

下文将解释图 6 中每个步骤的实现。

步骤 1:源文件 → 文本块

对于 RAG 来说,块大小的权衡是一个长期存在的问题。

如果信息块太长,调用 LLM 的次数就会减少。但是,由于上下文窗口的限制,要完全理解和管理大量信息就变得非常困难。这种情况会导致召回率下降。

在这里插入图片描述

如图 7 所示,在 HotPotQA 数据集中,600 个词块的有效实体提取量是 2400 个词块的两倍。

步骤 2:文本块 → 元素实例(实体和关系)

该方法包括通过从每个块中提取实体及其关系来构建知识图谱。这是通过结合 LLM 和提示工程来实现的。

与此同时,Graph RAG 采用了多阶段迭代过程。这一过程要求 LLM 确定是否已提取出所有实体,类似于二元分类问题。

步骤 3:元素实例 → 元素摘要 → 图表群落 → 群落摘要

在上一步中,提取实体、关系和主张实际上是一种抽象概括。

然而,Graph RAG认为这还不够,认为需要使用LLMs对这些“元素”进行进一步的总结。

一个潜在的问题是,**LLM 可能并不总是以相同的文本格式提取对同一实体的引用。**这可能会导致实体元素重复,从而在图中产生重复节点。

这种担忧很快就会消失。

在这里插入图片描述

Graph RAG 采用社群检测算法来识别图中的社群结构,将联系紧密的实体纳入同一社群。图 8 展示了使用莱顿算法在 MultiHop-RAG 数据集中识别出的图社区。

在这种情况下,即使 LLM 在提取过程中无法一致地识别实体的所有变体,社群检测也能帮助建立这些变体之间的联系。

一旦被归入一个社区,就表明这些变体指的是相同的实体内涵,只是表达方式或同义词不同而已。这类似于知识图谱领域的实体消歧。

在这里插入图片描述

在确定社区后,我们可以在莱顿层次结构中为每个社区生成类似报告的摘要。这些摘要对于理解数据集的整体结构和语义非常有用。它们还可以用来理解语料库,不会出现任何问题。

步骤 4:社区摘要 → 社区答案 → 全局答案

现在我们到了最后一步:根据上一步的社区摘要生成最终答案。

由于群落结构具有层次性,不同层次的摘要可以回答各种问题。

然而,这又给我们提出了另一个问题:有了多层次的社区摘要,哪个层次的摘要能在细节和覆盖面之间取得平衡?

Graph RAG 在进一步评估后(Graph RAG 论文第 3 节),会选择最合适的抽象层次。

如图 10 所示,对于给定的社区级别,会生成任何用户查询的全局答案。

在这里插入图片描述

本文为翻译,原文地址:https://medium.com/ai-advances/advanced-rag-12-enhancing-global-understanding-b13dc9a8db39

下一篇文章继续:《Advanced RAG》-12-增进RAG的全局理解(二)

  • 22
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静愚 AGI

你的善意终将流回自己,加油!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值