1.安装
pip install z3-solver
2.使用Z3创建一个简单的解析器
from z3 import *
# 创建一个解析器
s = Solver()
# 声明变量
x = Int('x')
y = Int('y')
# 添加约束
s.add(x > 0, y > 0)
# 查找一个模型
s.check()
print(s.model())
3.使用Z3进行数学函数的优化
from z3 import *
# 创建一个解析器
s = Optimize()
# 声明变量
x = Int('x')
y = Int('y')
# 添加约束
s.add(x > 0, y > 0)
# 最小化x*y
s.minimize(x*y)
# 查找模型
s.check()
print(s.model())
4.使用Z3进行定理证明
from z3 import *
# 创建一个解析器
s = Solver()
# 声明变量
x = Int('x')
y = Int('y')
# 添加约束
s.add(x > 0, y > 0, x*y > 100)
# 查找模型
print(s.check())
在这个例子中,我们试图找出x和y的值,使得xy > 100,但是这是不可能的,因为如果x和y都大于1,那么xy就会大于100。所以,s.check()会返回unsat,表示没有解决方案。
5.多未知数运算
from z3 import *
s = Solver()
v, w, x, y, z = Ints('v w x y z')
s.add(v * 23 + w * -32 + x * 98 + y * 55 + z * 90 == 333322)
s.add(v * 123 + w * -322 + x * 68 + y * 67 + z * 32 == 707724)
s.add(v * 266 + w * -34 + x * 43 + y * 8 + z * 32 == 1272529)
s.add(v * 343 + w * -352 + x * 58 + y * 65 + z * 5 == 1672457)
s.add(v * 231 + w * -321 + x * 938 + y * 555 + z * 970 == 3372367)
num = []
if s.check() == sat:
ans = s.model()
flag.append(ans[v].as_long()) # 使用 as_long() 来获取整数值
flag.append(ans[w].as_long())
flag.append(ans[x].as_long())
flag.append(ans[y].as_long())
flag.append(ans[z].as_long())
print(num)