R 语言 特征提取 变量筛选 好用的包和语句

该博客介绍了如何使用R语言的Boruta和caret包进行特征提取和变量筛选。首先,通过kruskal.test进行初步筛选,然后利用Boruta算法进一步确认重要变量,以此在T2WI、SWI和BOLD数据集中找到与eGFR相关性强的特征。
摘要由CSDN通过智能技术生成

一个是Boruta, 一个是carat

双重降维(Boruta包和caret包)

 

#correlation of texture
setwd("C:/Users/Administrator/Desktop/mission/correlation")
library(readxl)
T2WI<- read_excel("Texture features and eGFR.xlsx", 
                  sheet = "T2WI")
SWI<- read_excel("Texture features and eGFR.xlsx", 
                  sheet = "SWI")
BOLD<- read_excel("Texture features and eGFR.xlsx", 
                  sheet = "BOLD")
blood<- read_excel("Texture features and eGFR.xlsx", 
                  sheet = "blood")

##step 1
#T2WI
T2WI_selected<-c()
T2WI_feature<-T2WI[,-c(1,2)]
for (feature in names(T2WI_feature)){
  result_temp <- kruskal.test(T2WI[[feature]]~T2WI$Group)
  if (result_temp$p.value<0.05) {
    T2WI_selected<-c(T2WI_s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值