题意
在二叉树结点1处放一个小球,它会往下落。每个内结点上都有一个开关,初始全部关闭,当每次有小球落到一个开关上时,状态都会改变。当小球到达一个内结点时,如果该结点上的开关关闭,则往左走,否则往右走,直到走到叶子结点
思路
根据奇偶找规律
引用一下紫书写的
每个小球都会落在根结点上,因此前两个小球必然是一个在左子树,一个在右子树。一般地,只需看小球编号的奇偶性,就能知道它是最终在哪棵子树中。对于那些落入根结点左子树的小球来说,只需知道该小球是第几个落在根的左子树里的,就可以知道它下一步往左还是往右了。依此类推,直到小球落到叶子上。如果使用题目中给出的编号I,则当I是奇数时,它是往左走的第(I+1)/2个小球;当I是偶数时,它是往右走的第I/2个小球。这样,可以直接模拟最后一个小球的路线
记录
对于一个结点k,其左子结点、右子结点的编号分别是2k和2k+1
AC代码
#include <cstdio>
using namespace std;
int main()
{
int T, d, n, k;
while( scanf("%d",&T) == 1 && T > 0 ){
while( T-- ){
scanf("%d%d",&d,&n);
k = 1;
for( int i = 1; i < d; i++ ){
if( n % 2 == 0 ){
k = 2*k+1;
n = n / 2;
}
else{
k = 2*k;
n = (n+1)/2;
}
}
printf("%d\n",k);
}
}
return 0;
}