TaskManager与Slot介绍
Flink的每个TaskManager为集群提供solt。 solt的数量通常与每个TaskManager节点的可用CPU内核数成比例。一般情况下你的slot数是你每个节点的cpu的核数。
并行度(Parallel)
一个Flink程序由多个任务组成(source、transformation和 sink)。 一个任务由多个并行的实例(线程)来执行, 一个任务的并行实例(线程)数目就被称为该任务的并行度。
任务的并行度设置可以从多个层次指定
•Operator Level(算子层次)
•Execution Environment Level(执行环境层次)
•Client Level(客户端层次)
•System Level(系统层次)
并行度设置之Operator Level
算子、数据源和sink的并行度可以通过调用 setParallelism()方法来指定
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> text = [...]
DataStream<Tuple2<String, Integer>> wordCounts = text
.flatMap(new LineSplitter())
.keyBy(0)
.timeWindow(Time.seconds(5))
.sum(1).setParallelism(5);
wordCounts.print();
env.execute("Word Count Example");
并行度设置之Execution Environment Level
执行环境(任务)的默认并行度可以通过调用setParallelism()方法指定。为了以并行度3来执行所有的算子、数据源和data sink, 可以通过如下的方式设置执行环境的并行度:
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(3);
DataStream<String> text = [...]
DataStream<Tuple2<String, Integer>> wordCounts = [...]
wordCounts.print();
env.execute("Word Count Example");
并行度设置之Client Level
并行度可以在客户端将job提交到Flink时设定。对于CLI客户端,可以通过-p参数指定并行度:
./bin/flink run -p 10 ../examples/*WordCount-java*.jar
并行度设置之System Level
在系统级可以通过设置flink-conf.yaml文件中的parallelism.default属性来指定所有执行环境的默认并行度
并行度设置的优先级