设有两个圆凸内接四边形 A B Q D ABQD ABQD 和 B P Q C BPQC BPQC, 在线段 P Q PQ PQ 上存在一点 E E E, 使得, ∠ E A P = ∠ E D Q \angle EAP=\angle EDQ ∠EAP=∠EDQ, ∠ E B P = ∠ E C Q \angle EBP=\angle ECQ ∠EBP=∠ECQ. 求证: A A A, B B B, C C C, D D D 四点共圆.
证明:
设 B C BC BC, P Q PQ PQ 交于 I I I. 设直线 B P BP BP 和 C Q CQ CQ 交于点 J J