图像去雾是计算机视觉领域中的一项重要任务,它的目标是从有雾图像中恢复出清晰的图像内容

42 篇文章 9 订阅 ¥59.90 ¥99.00
本文介绍了图像去雾的重要性和一种结合暗通道先验与非均值滤波的去雾方法。通过暗通道先验估计大气光,非均值滤波保留图像细节,算法步骤包括估算暗通道、大气光、透射率和平滑。提供了MATLAB代码示例以实现这一过程。
摘要由CSDN通过智能技术生成

图像去雾是计算机视觉领域中的一项重要任务,它的目标是从有雾图像中恢复出清晰的图像内容。在本文中,我将介绍一种基于暗通道先验和非均值滤波的图像去雾方法,并提供相应的MATLAB代码实现。

暗通道先验

暗通道先验是图像去雾算法中常用的先验知识之一。它基于一个观察结果:大多数自然场景中,至少在一些局部区域中,至少有一个颜色通道的像素值非常低。这个低像素值区域被称为暗通道。暗通道中的像素值趋近于零,因为雾气的散射会导致图像中亮度较低的区域出现颜色值较低的现象。

通过利用暗通道先验,我们可以估计出原始图像中的全局大气光分量。大气光是由雾气散射引起的,它会使得图像中亮度较高的区域出现颜色值较高的现象。通过估计大气光,我们可以更准确地恢复出原始图像的细节。

非均值滤波

非均值滤波是一种图像处理技术,用于平滑图像并减少噪声。它的基本思想是对每个像素点周围的邻域进行加权平均,其中权重是根据邻域内像素与中心像素的相似度计算得到的。非均值滤波可以有效地保留图像的细节信息,并在去除雾气时起到较好的效果。

算法步骤

下面是基于暗通道先验和非均值滤波的图像去雾算法的步骤:

  1. 读取原始有雾图像并将其转换为灰度图像。

    foggy_image 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值