非线性回归
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
x_data=np.linspace(-0.5,0.5,200)[:,np.newaxis]
noise=np.random.normal(0,0.02,x_data.shape)
y_data=np.square(x_data)+noise
x=tf.placeholder(tf.float32,[None,1])
y=tf.placeholder(tf.float32,[None,1])
Weight_L1=tf.Variable(tf.random_normal([1,10]))
biases_L1=tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L1=tf.matmul(x,Weight_L1)+biases_L1
L1=tf.nn.tanh(Wx_plus_b_L1)
Weight_L2=tf.Variable(tf.random_normal([10,1]))
biases_L2=tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2=tf.matmul(L1,Weight_L2)+biases_L2
prediction=tf.nn.tanh(Wx_plus_b_L2)
loss=tf.reduce_mean(tf.square(y-prediction))