深度学习框架TensorFlow学习与应用(二)——非线性回归、MINST数据集分类

本文介绍了深度学习框架TensorFlow中非线性回归的应用,并详细探讨了MNIST数据集的分类,包括数据集介绍、神经网络构建、Softmax函数的运用,以及一个简单的MNIST分类实例。
摘要由CSDN通过智能技术生成

非线性回归

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
#使用numpy生成200个随机点
x_data=np.linspace(-0.5,0.5,200)[:,np.newaxis]#-0.5到0.5中均匀分布的200个点,之后增加一个维度
noise=np.random.normal(0,0.02,x_data.shape)#生成干扰,形状和x_data一样
y_data=np.square(x_data)+noise

#定义两个placeholder
x=tf.placeholder(tf.float32,[None,1])
y=tf.placeholder(tf.float32,[None,1])

#定义神经网络中间层,10个神经元
Weight_L1=tf.Variable(tf.random_normal([1,10]))#权值
biases_L1=tf.Variable(tf.zeros([1,1]))#偏置值,10个
Wx_plus_b_L1=tf.matmul(x,Weight_L1)+biases_L1#信号的总和
L1=tf.nn.tanh(Wx_plus_b_L1)#中间层的输出,用双曲正切函数作为激活函数

#定义输出层,1个神经元
Weight_L2=tf.Variable(tf.random_normal([10,1]))
biases_L2=tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2=tf.matmul(L1,Weight_L2)+biases_L2
prediction=tf.nn.tanh(Wx_plus_b_L2)

#二次代价函数
loss=tf.reduce_mean(tf.square(y-prediction))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值