异构计算 — CPU+GPU

本文介绍了CPU+GPU异构计算中的分离式架构,详细讲解了CPU和GPU通过PCIe通信的局限性,以及Nvidia的NVLink技术如何提升性能。同时,阐述了GPU的资源管理模型,包括MMIO、GPU Context、GPU Channel、GPU Page Table以及PCIe BAR等概念,揭示了GPU上下文切换和命令执行的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

CPU+GPU 异构计算

在现代的异构计算系统中,GPU 是以 PCIe 卡的形式作为 CPU 的辅助计算设备。根据 CPU 和 GPU 是否共享了内存,可分为两种类型的 CPU-GPU 异构计算架构:

  1. 分离式架构:CPU 和 GPU 拥有各自独立的缓存和内存,两者之间通过 PCIe 总线通信。目前主要做计算机、智能手机中使用。
  2. 耦合式架构:CPU 和 GPU 共享内存和缓存。AMD 的 APU 采用的就是这种结构,目前主要使用在游戏主机中。

在这里插入图片描述

分离式架构

在这里插入图片描述

分离式架构的缺点在于 PCIe 传输成了其中的性能瓶颈,例如:PCIe Gen3 x1 理论带宽约为 1000MB/s,所以对于 Gen3 x32 的最大带宽约为 32GB/s,而受限于本身的实现机制,有效带宽往往只有理论值的 2/3,甚至更低。

由于,CPU 与 GPU 之间的通信开销是比较大的。而针对 G

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

范桂飓

文章对您有帮助就请一键三连:)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值