数据结构课程设计(选):最小生成树

1.任务:

[问题描述]

利用普利姆算法和克鲁斯卡尔算法实现最小生成树问题。

[基本要求]

(1)自行建立图的数据文件,第一行是顶点个数,然后依次是顶点名,接下来是边,用float表示边的权值;

(2)以邻接表或者邻接矩阵表示图皆可;

(3)分别利用prim和Kruskal算法实现最小生成树;

(4)输出最小生成树的权值之和,及所用的边。

2.采用的数据结构

        采用图,树,普利姆算法和克鲁斯卡尔算法。

3.算法设计思想

        普利姆算法:每一次在还未被选中的顶点中寻找连接已被选中形成树的最小边,直至顶点全部加入最小生成树中。时间复杂度T(n)=O(n^2).

        克鲁斯卡尔算法:按照最小的权选择边,当选边不产生回路时,就将这条边选定,直至顶点全部加入最小生成树中。时间复杂度T(n)=O(eloge).

4.源程序:

#include <iostream>
#include <fstream>
#include <string>
using namespace std; 

typedef struct VertexType
{
	int code;                                                 //顶点编号 
	string info;                                              //顶点其他信息 
}VertexType;

typedef struct MGraph
{
	int arcs[32][32];                                         //邻接矩阵 
	int vexnum,arcnum;                                        //顶点数目,边的数目 
	VertexType vexs[32];                                      //顶点信息 
	int selected[32][32];
	bool picked[32];
}MGraph;

void CreateGraph(MGraph &G)                                   //图的建立 
{

	ifstream infile;
	infile.open("最小生成树.txt");
	if(infile)
	{
		infile>>G.vexnum;
		for(int i=0;i<G.vexnum;i++)
    	{
	    	G.vexs[i].code=i;
	    	infile>>G.vexs[i].info;
	    }
	    for(int i=0;i<G.vexnum;i++)
    	{
	    	for(int j=0;j<G.vexnum;j++)
	    	{
	    		infile>>G.arcs[i][j];
	    		G.selected[i][j]=0;
	    	}
	    	G.picked[i]=false;
    	}
	}
	else
	{
		printf("文件打开失败!");
	}
	infile.close();
}

int FindMin(MGraph &G)                                      //寻找所有边中的最小边 
{
	int min=256;
	int x1,y1;
	for(int i=0;i<G.vexnum;i++)
	{
		for(int j=0;j<G.vexnum;j++)
		{
			if((G.arcs[i][j]<min)&&(G.arcs[i][j]!=0))
			{
			    min=G.arcs[i][j];
				x1=i;
				y1=j;
			}
		}
	}
	G.selected[x1][y1]=1;
	G.picked[x1]=true;
	G.picked[y1]=true;
	return x1;
}

int FindMinPrim(MGraph &G)                                  //Prim算法,寻找邻接的最小边 
{
	int min=256;
	int x1,y1;
	for(int i=0;i<G.vexnum;i++)
	{
		if(!G.picked[i])
		{
			for(int j=0;j<G.vexnum;j++)
		    {
			    if((G.picked[j]==true)&& (G.arcs[i][j]!=0) && (G.arcs[i][j]<min) )
			    {
			    	min=G.arcs[i][j];
					x1=i;
					y1=j;
				}
			}
		}
	}
	G.selected[x1][y1]=1;
	G.picked[x1]=true;
	G.picked[y1]=true;
	return x1;
}

int Prim(MGraph &G)
{
	FindMin(G);
	for(int i=0;i<G.vexnum-2;i++)
	{
		FindMinPrim(G);
	}
	int sum=0;
	for(int i=0;i<G.vexnum;i++)
	{
		for(int j=0;j<G.vexnum;j++)
		{
			if(G.selected[i][j])
			{
				cout<<G.vexs[i].info<<"-"<<G.vexs[j].info<<"  (权值为"<<G.arcs[i][j]<<")"<<endl;
				sum+=G.arcs[i][j];
			}
		}
	}
	return sum;
}

int b[32][32];
int FindKruskal(MGraph &G)
{
	int min=256;
	int x1,y1;
	for(int i=0;i<G.vexnum;i++)
	{
		for(int j=0;j<G.vexnum;j++)
		{
		    if((G.arcs[i][j]!=0) && (G.arcs[i][j]<min) && (b[i][j]==0))
		    {
		    	min=G.arcs[i][j];
				x1=i;
				y1=j;
			}
		}
	}
	G.selected[x1][y1]=1;
	b[x1][y1]=1;
	b[y1][x1]=1;
	for(int i=0;i<G.vexnum;i++)
	{
		if((b[x1][i]==0) && (b[i][y1]==1))
		{
			b[x1][i]=1;
			b[i][x1]=1;
		}
		if((b[y1][i]==0) && (b[i][x1]==1))
		{
			b[y1][i]=1;
			b[i][y1]=1;
		}
	}
	return x1;
}

int Kruskal(MGraph &G)
{
	for(int i=0;i<G.vexnum;i++)
	{
		for(int j=0;j<G.vexnum;j++)
		{
			G.selected[i][j]=0;
			b[i][j]=0;
		}
	}
	FindMin(G);
	int x=FindMin(G);
	for(int i=0;i<G.vexnum;i++)
	{
		if(G.selected[x][i]==1)
		{
			b[x][i]=1;
			b[i][x]=1;
			break;
		}
	}
	for(int i=0;i<G.vexnum-2;i++)
	{
		FindKruskal(G);
	}
	int sum=0;
	for(int i=0;i<G.vexnum;i++)
	{
		for(int j=0;j<G.vexnum;j++)
		{
			if(G.selected[i][j])
			{
				cout<<G.vexs[i].info<<"-"<<G.vexs[j].info<<"  (权值为"<<G.arcs[i][j]<<")"<<endl;
				sum+=G.arcs[i][j];
			}
		}
	}
	return sum;
}


int main() 
{
	MGraph G;
	CreateGraph(G);
	int sum=0;
	cout<<"用Prim算法实现最小生成树,所用边如下:\n";
    sum=Prim(G);
	cout<<"最小生成树的权值之和为"<<sum;
	cout<<"\n---------------------------------------------\n";
	cout<<"用Kruskal算法实现最小生成树,所用边如下:\n";
    sum=Kruskal(G);
	cout<<"最小生成树的权值之和为"<<sum;
	return 0;
}

5.源程序测试数据及结果

最小生成树测试结果

6.存在问题及改进方法

        在克鲁斯卡尔算法中,判断选定的边是否构成环时,另外开辟了数组,在每次选定一条边之后就使用类似弗洛伊德算法的方式,对k进行遍历。若顶点i和顶点j不连通,但顶点i与顶点k,顶点k与顶点j连通,则i和j也连通。这种方法在每一次选定边后都要使用三层循环,会导致程序效率较低,可以使用拓扑排序来进行优化。在输出时,边与边之间的关系不是非常明确,可以使用其他方式进行输出。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值