题目描述
在一无限大的二维平面中,我们做如下假设:
1、每次只能移动一格;
2、不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);
3、走过的格子立即塌陷无法再走第二次。
求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。
1、每次只能移动一格;
2、不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);
3、走过的格子立即塌陷无法再走第二次。
求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。
输入描述
首先给出一个正整数C,表示有C组测试数据。
接下来的C行,每行包含一个整数n(n<=20),表示要走n步。
接下来的C行,每行包含一个整数n(n<=20),表示要走n步。
输出描述
请编程输出走n步的不同方案总数;
每组的输出占一行。
每组的输出占一行。
输入样例
2
1
2
输出样例
3
7
提示
来源or类型
AC代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
#include<iostream>
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
int main()
{
int N,a,b[21],i;
cin>>N;
while (N--)
{
cin>>a;
b[1]=3;
b[2]=7;
for (i=3;i<=a;i++)
b[i]=2*b[i-1]+b[i-2];
cout<<b[a]<<endl;
}
return 0;
}
/**************************************************************
Problem: 1807
User: 031640209
Language: C++
Result: Accepted
Time:6 ms
Memory:1688 kb
****************************************************************/
|