布尔矩阵

这篇博客详细介绍了布尔矩阵的相关问题,包括题目描述、输入输出格式,并提供了输入样例和输出样例。博主还分享了获得正确答案(AC)的代码实现。
摘要由CSDN通过智能技术生成

题目描述

一个布尔矩阵有一种奇偶性,即该矩阵所有行和所有列的和都是偶数。下面这4×4的矩阵就具有奇偶性: 
1 0 1 0 
0 0 0 0 
1 1 1 1 
0 1 0 1 
它所有行的和是2,0,4,2。它所有列的和是2,2,2,2。
现请你编写一个程序,读入这个矩阵并检查它是否具有奇偶性。如果没有,你的程序应当再检查一下它是否可以通过修改一位(把0修改为1,把1修改为0)来使它具有奇偶性。如果不可能,这个矩阵就被认为是破坏了。

输入描述

输入包含多组测试数据。每组测试数据的第一行是一个整数n(1<=n<=100),代表该矩阵的大小。在接下来的行中,每行有n个整数。矩阵是由0或1构成的。n=0时,输入结束。

输出描述

对于每组输入,如果这个矩阵具有奇偶性,则输出“OK”。如果奇偶性能通过只修改该矩阵中的一位来建立,那么输出“Change bit (i,j)”,这里i和j是被修改的这位的行号和列号。否则,输出“Corrupt”。

输入样例

4
1 0 1 0
0 0 0 0
1 1 1 1
0 1 0 1
4
1 0 1 0
0 0 1 0
1 1 1 1
0 1 0 1
4
1 0 1 0
0 1 1 0
1 1 1 1
0 1 0 1
0

输出样例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值