Max Sum

Description

Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 

Input

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 

Output

For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
 

Sample Input

    
    
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
 

Sample Output

    
    
Case 1: 14 1 4 Case 2: 7 1 6
线性DP;
#include<iostream> 
#include <stdio.h>
using namespace std;

int a[100010];
int main(){
    int T,N,i,cas=1;
    int start,end,temp,sum,max=0;//标记;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&N);
        start=end=temp=1;
        sum=0;
        max=-1001;
        for(i=1;i<=N;i++){
            scanf("%d",&a[i]);
            sum+=a[i];
            if(sum>max)
            {
                max=sum;
                start=temp;
                end=i;
            }
            if(sum<0){
                sum=0;
                temp=i+1;
            }
        }
        printf("Case %d:\n",cas++);
        printf("%d %d %d\n",max,start,end);
        if(T>0)                    //格式;
            printf("\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值