全排列算法原理和实现

105 篇文章 0 订阅

From: http://www.cnblogs.com/nokiaguy/archive/2008/05/11/1191914.html

    全排列是将一组数按一定顺序进行排列,如果这组数有n个,那么全排列数为n!个。现以{1, 2, 3, 4, 5}为

例说明如何编写全排列的递归算法。



1、首先看最后两个数4, 5。 它们的全排列为4 5和5 4, 即以4开头的5的全排列和以5开头的4的全排列。

由于一个数的全排列就是其本身,从而得到以上结果。

2、再看后三个数3, 4, 5。它们的全排列为3 4 5、3 5 4、 4 3 5、 4 5 3、 5 3 4、 5 4 3 六组数。

即以3开头的和4,5的全排列的组合、以4开头的和3,5的全排列的组合和以5开头的和3,4的全排列的组合.

从而可以推断,设一组数p = {r1, r2, r3, ... ,rn}, 全排列为perm(p),pn = p - {rn}。

因此perm(p) = r1perm(p1), r2perm(p2), r3perm(p3), ... , rnperm(pn)。当n = 1时perm(p} = r1。

为了更容易理解,将整组数中的所有的数分别与第一个数交换,这样就总是在处理后n-1个数的全排列。



算法如下:

#include <stdio.h>  

int n =  0;  

void swap( int *a,  int *b) 
{     
     int m;     
    m = *a;     
    *a = *b;     
    *b = m; 
}  
void perm( int list[],  int k,  int m) 
{     
     int i;     
     if(k > m)     
    {          
         for(i =  0; i <= m; i++)             
            printf( " %d  ", list[i]);         
        printf( " \n ");         
        n++;     
    }     
     else     
    {         
         for(i = k; i <= m; i++)         
        {             
            swap(&list[k], &list[i]);             
            perm(list, k +  1, m);             
            swap(&list[k], &list[i]);         
        }     
    } 

int main() 
{     
     int list[] = { 12345};     
    perm(list,  04);     
    printf( " total:%d\n ", n);     
     return  0
}  
谁有更高效的递归和非递归算法,请回贴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值