python相似性检测的安装包

安装python-Levenshtein模块

pip install python-Levenshtein

使用python-Levenshtein模块

import Levenshtein

算法说明

1). Levenshtein.hamming(str1, str2)
计算汉明距离。要求str1和str2必须长度一致。是描述两个等长字串之间对应 位置上不同字符的个数。

2). Levenshtein.distance(str1, str2)
计算编辑距离(也称为 Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入、删除、替换。
算法实现参考动态规划整理。

3). Levenshtein.ratio(str1, str2)
计算莱文斯坦比。计算公式r = (sum - ldist) / sum, 其中sum是指str1 和 str2 字串的长度总和,ldist是 类编辑距离
注意 :这里的类编辑距离不是2中所说的编辑距离,2中三种操作中每个操作+1,而在此处,删除、插入依然+1,但是替换+2
这样设计的目的:ratio('a', 'c'),sum=2, 按2中计算为(2-1)/2 = 0.5,’a','c'没有重合,显然不合算,但是替换操作+2,就可以解决这个问题。

4). Levenshtein.jaro(s1 , s2 )
计算jaro距离,

其中的 m 为s1 , s2的匹配长度,当某位置的认为匹配当该位置字符相同,或者在不超过

t是调换次数的一半

5.) Levenshtein.jaro_winkler(s 1 , s 2 )
计算 Jaro–Winkler距离:

import Levenshtein 报错:ImportError: No module named Levenshtein

于是去: python-Levenshtein 下载源码进行安装(在 http://www.lfd.uci.edu/~gohlke/pythonlibs/#python-levenshtein其实也有编译好的exe),第一次安装的时候报错:error: Unable to find vcvarsall.bat ,但其实我是装了VS2010的,所以执行如下步骤正常安装:

1.设置环境变量,执行:

SET VS90COMNTOOLS=%VS100COMNTOOLS%

2.再去安装:

setup.py install

就可以正常,编译,安装了。

$ python
>>> import Levenshtein
>>> help(Levenshtein.ratio)
ratio(...)
    Compute similarity of two strings.

    ratio(string1, string2)

    The similarity is a number between 0 and 1, it's usually equal or
    somewhat higher than difflib.SequenceMatcher.ratio(), becuase it's
    based on real minimal edit distance.

    Examples:
    >>> ratio('Hello world!', 'Holly grail!')
    0.58333333333333337
    >>> ratio('Brian', 'Jesus')
    0.0

>>> help(Levenshtein.distance)
distance(...)
    Compute absolute Levenshtein distance of two strings.

    distance(string1, string2)

    Examples (it's hard to spell Levenshtein correctly):
    >>> distance('Levenshtein', 'Lenvinsten')
    4
    >>> distance('Levenshtein', 'Levensthein')
    2
    >>> distance('Levenshtein', 'Levenshten')
    1
    >>> distance('Levenshtein', 'Levenshtein')
    0

 
 
  • difflib 
  • >>> import difflib
    
    >>> difflib.SequenceMatcher(None, 'abcde', 'abcde').ratio()
    1.0
    
    >>> difflib.SequenceMatcher(None, 'abcde', 'zbcde').ratio()
    0.80000000000000004
    
    >>> difflib.SequenceMatcher(None, 'abcde', 'zyzzy').ratio()
    0.0
  •  

    FuzzyWuzzy

    git clone git://github.com/seatgeek/fuzzywuzzy.git fuzzywuzzy
    cd fuzzywuzzy
    python setup.py install
    
    >>> from fuzzywuzzy import fuzz
    >>> from fuzzywuzzy import process
    
    Simple Ratio
    >>> fuzz.ratio("this is a test", "this is a test!")
        96
    
    Partial Ratio
    >>> fuzz.partial_ratio("this is a test", "this is a test!")
        100
    
    Token Sort Ratio
    >>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
        90
    >>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
        100
    
    Token Set Ratio
    >>> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
        84
    >>> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
        100
    gitclone git://github.com/seatgeek/fuzzywuzzy.git fuzzywuzzy
    cdfuzzywuzzy
    pythonsetup.pyinstall
     
    >>> fromfuzzywuzzyimportfuzz
    >>> fromfuzzywuzzyimportprocess
     
    SimpleRatio
    >>> fuzz.ratio("this is a test", "this is a test!")
        96
     
    PartialRatio
    >>> fuzz.partial_ratio("this is a test", "this is a test!")
        100
     
    TokenSortRatio
    >>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
        90
    >>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
        100
     
    TokenSetRatio
    >>> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
        84
    >>> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
        100
    

    google-diff-match-patch

    import diff match patch textA = "the cat in the red hat" textB = "the feline in the blue hat"

    dmp = diff match patch.diff match patch()  #create a diff match patch object diffs = dmp.diff main(textA, textB)   # All 'diff' jobs start with invoking diff main()

    d value = dmp.diff levenshtein(diffs) print d_value

    maxLenth = max(len(textA), len(textB)) print float(d_value)/float(maxLenth)

    similarity = (1 - float(d_value)/float(maxLenth)) * 100 print similarity

    importdiff_match_patch
    textA = "the cat in the red hat"
    textB = "the feline in the blue hat"
     
    dmp = diff_match_patch.diff_match_patch()  #create a diff_match_patch object
    diffs = dmp.diff_main(textA, textB)   # All 'diff' jobs start with invoking diff_main()
     
    d_value = dmp.diff_levenshtein(diffs)
    printd_value
     
    maxLenth = max(len(textA), len(textB))
    printfloat(d_value)/float(maxLenth)
     
    similarity = (1 - float(d_value)/float(maxLenth)) * 100
    printsimilarity
  • title2
第二种方法安装
安装pip install python-Levenshtein,出现错误:Microsoft Visual C++ 14.0 is required
出现错误主要是因为直接使用 pip install 【第三方库名】 安装自己需要的第三方库。
解决办法:
一定要安装和自己windows版本和python版本对应的第三方库
在这里下载需要的第三方库:http://www.lfd.uci.edu/~gohlke/pythonlibs
安装步骤:
首先:在网站上下载对于版本的 python_Levenshtein-0.12.0-cp36-cp36m-win_amd64.whl
然后:然后在控制台上切换到放置位置后输入pip install python_Levenshtein-0.12.0-cp36-cp36m-win_amd64.whl
就完成了!!!



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值