- 博客(1775)
- 资源 (277)
- 问答 (4)
- 收藏
- 关注
原创 samout加上相对位置编码提前收敛
整体而言,这个模型似乎是为了处理序列到序列的任务(如机器翻译或文本生成),其中使用了多头注意力和前馈网络来捕捉序列数据中的复杂关系。:解码器层,结合了多头注意力(此处使用MaxState或KAttention)和前馈网络,通过层归一化处理输入数据。:整个模型的主体,包含词嵌入层、位置编码、多个解码器层和一个输出层。该类还定义了状态前向传播方法,用于处理序列数据。:一个前馈网络,包含两个线性层和一个ReLU激活函数,用于对输入数据进行非线性变换。),这些层对输入数据进行处理,并通过累积最大操作进行状态更新。
2024-10-27 16:10:40 334
原创 有向无环图DAG
如果子节点可以有多个父节点,那么我们实际上处理的是一个有向无环图(DAG)而不是树。在DAG中,一个节点可以有多个前驱(父节点)。在这种情况下,我们可以使用广度优先搜索(BFS)来遍历图,但需要注意的是,我们必须确保在遍历过程中不会重复访问节点。请注意,这个例子中的编码是基于节点在BFS遍历中首次被访问的顺序。函数来处理这种情况,例如通过初始化多个根节点来启动遍历。函数,使其能够接受一个根节点列表,并且使用了一个。集合来跟踪已经访问过的节点,以避免重复访问。的子节点,这表明了它可以有多个父节点。
2024-10-24 22:14:53 171
原创 问:该不该调整分词让数据集信息熵更低
信息熵越低,意味着文本中的词分布越不均匀,即某些词出现的频率非常高,而其他词出现的频率较低。该代码的目的是对文本文件进行分词,然后计算词频,并根据词频计算信息熵。将低频词汇的词和对应的计数转换为列表,并扩展每个词的列表为其计数的大小,然后使用。将词汇分为高频词汇(概率大于0.008)和低频词汇(概率小于等于0.008)。将计算得到的概率添加为DataFrame的一个新列。将词频转换为概率,即每个词的出现次数除以总词数。筛选出概率大于0.008的词,并计算信息熵。统计每个词的出现次数,并将结果转换为。
2024-10-20 15:56:50 244
原创 爬取简书后分析2
这段代码的目的是读取一个Pickle文件,对其进行一系列的数据处理和转换,然后保存为CSV文件,并绘制一些图表。这里计算了每增加一个粉丝所需消耗的字数和文章数,通过将"字数"和"文章"列转换为浮点数,然后分别除以"粉丝"列的浮点数值。它原本是用来计算每增加一个总资产单位所需消耗的字数和文章数。如果"总资产"列中的值包含字符"w",则将其替换为"10000",否则保持原值。这里计算了每增加一个"收获喜欢"所需消耗的文章数。将处理后的DataFrame保存为CSV文件,基于"name"列删除重复的行。
2024-10-20 15:02:16 341
原创 爬取简书后分析1
这段代码的主要目的是处理和合并两个Pandas DataFrame对象,并将结果保存为Pickle文件。将合并后的DataFrame保存为Pickle文件,以便后续使用。中的所有DataFrame合并成一个大的DataFrame。这里读取了两个Pickle文件,并将它们分别赋值给变量。库,分别用于数据处理和数值计算。中的数据一一对应起来进行遍历。中的"name"列的值和。
2024-10-20 15:00:10 306
原创 爬取简书后分析0
这段代码的目的是处理和分析一个名为 “jian_shu.pkl” 的 pandas pickle 文件,该文件中包含了从简书网站抓取的数据。
2024-10-19 17:03:39 788
原创 爬取简书1
这段代码是一个使用 Python 语言编写的脚本,它使用了 Selenium 库来自动化操作网页浏览器,特别是 Microsoft Edge 浏览器。
2024-10-19 16:56:59 285
原创 Polars 常用操作指南
由于技术限制,我无法直接访问您提供的网页链接。不过,我可以根据 Polars 的官方文档和我所知的信息,为您提供一个关于如何进行常用操作的概括性总结,并包含一些代码例子。
2024-10-11 11:45:00 428
原创 Polars 连接操作指南
外连接是一种连接方式,它保留左 DataFrame 和右 DataFrame 中的所有行,即使它们之间没有匹配的行。左连接是一种连接方式,它保留左 DataFrame 中的所有行,即使右 DataFrame 中没有匹配的行。Polars 支持多种连接操作,允许您将两个或多个 DataFrame 连接在一起。以上代码展示了如何在 Polars 中进行连接操作。更多详细信息和高级用法,请访问。内连接是一种连接方式,它只保留两个 DataFrame 中都有匹配行的行。
2024-10-11 09:45:00 471
原创 Polars 多文件处理指南
它的目标是通过并行化 DataFrame 上的查询,提供一个快速的解决方案。如果您的文件不必位于单个表中,您还可以为每个文件构建一个查询计划,并在 Polars 线程池中并行执行它们。所有查询计划的执行都是极好的并行执行,不需要任何通信。以上是根据您提供的链接内容制作的 Markdown 格式的总结。这段代码将读取所有匹配的文件,并为每个文件构建一个查询计划,最后将所有查询的结果收集到一个列表中。Polars 可以根据您的需要和内存紧张程度,以不同的方式处理多个文件。更多详细信息和高级用法,请访问。
2024-10-10 09:15:00 145
原创 Polars 字符串处理指南
由于使用 Arrow 后端,Polars 中的字符串操作比使用 NumPy 或 Pandas 执行的相同操作快得多。在后者中,字符串存储为 Python 对象。在遍历 np.array 或 pd.Series 时,CPU 需要跟踪所有字符串指针,并跳转到许多随机内存位置——这是非常低效的缓存。在 Polars(通过 Arrow 数据结构)中,字符串在内存中是连续的。因此,对于 CPU 来说,遍历缓存是最优的,也是可预测的。它的目标是通过并行化 DataFrame 上的查询,提供一个快速的解决方案。
2024-10-10 08:45:00 145
原创 Polars DataFrame 行和列选择指南
由于技术限制,我无法直接访问您提供的网页链接。不过,我可以根据 Polars 的官方文档和我所知的信息,为您提供一个关于如何选择 DataFrame 中的行和列的概括性总结,并包含一些代码例子。
2024-10-09 10:00:00 528
原创 Polars 时间戳处理指南
Polars 是一个用 Rust 编写的 DataFrame 库,使用 Arrow 作为其底层数据结构。它的目标是通过并行化 DataFrame 上的查询,提供一个快速的解决方案。以上是根据您提供的链接内容制作的 Markdown 格式的总结。更多详细信息和高级用法,建议您访问 Polars 官方文档以获取完整信息。解析为日期类型,并创建了一个新的 DataFrame。更多详细信息和高级用法,请访问。
2024-10-09 09:15:00 500
原创 Polars 时间序列操作指南
Polars 将下采样视为分组 (groupby) 操作的一个特例,因此表达式 API 为分组上下文 (contexts) 提供了两个额外的入口。动态窗口的大小并不由 DataFrame 中的行数决定,而是由一个时间单位 (temporal unit) 决定,比如一天 () 为单位,把关于 2021 年的日期范围 (date range) 创建为一个 DataFrame。匹配某个动态窗口的值会被分配到该窗口所对应的组中,接下来你可以用强大的表达式方法进行聚合操作。在下面的一段代码中,我们以天 (
2024-10-08 20:15:51 368
原创 Polars 透视操作指南
以上示例展示了如何使用Polars进行不同数据格式的读写操作。在实际应用中,你可能需要指定更多的参数,例如分隔符、编码、压缩选项等,以适应不同的数据源和需求。请确保在使用上述代码时已经安装了Polars库以及可能需要的额外依赖项(例如。请注意,读写数据库需要额外的配置,例如数据库连接字符串和适当的驱动程序。在实际使用中,你可能需要安装并配置相应的数据库驱动。部分涵盖了用于读写不同数据格式的功能。在Polars的Python API中,用于读写Excel文件)。
2024-10-08 08:00:00 495
原创 Polars:从 Apache Spark 过渡指南
请注意,配置选项可能会影响Polars的整体性能和行为,因此应根据具体的使用场景和需求来设置它们。在实际使用中,建议在操作开始之前设置配置选项,并在操作完成后恢复默认设置,以避免对后续操作产生意外影响。以上示例展示了如何设置和获取Polars的配置选项。在实际应用中,你可能需要根据数据处理的需求调整这些选项。请确保在使用上述代码时已经安装了Polars库。部分提供了配置选项,允许用户自定义Polars的行为。在Polars的Python API中,
2024-10-07 10:39:32 745
原创 Polars:从 Pandas 过渡指南
在上述示例中,我们定义了一个Schema,并展示了如何使用它来创建一个DataFrame、验证DataFrame的结构以及修改Schema。在实际应用中,Schema通常用于数据加载和转换过程中,确保数据类型的一致性和正确性。请确保在使用上述代码时已经安装了Polars库。部分定义了DataFrame或Series中列的数据类型和结构。Schema是表的结构描述,它指定了表中每列的名称和数据类型。在Polars的Python API中,是64位浮点数类型,
2024-10-07 10:32:30 890
原创 Polars 索引操作指南
以上示例展示了如何创建不同数据类型的Series并将其添加到DataFrame中。在实际使用中,Polars会自动推断数据类型,但有时可能需要显式指定数据类型以确保正确处理数据。请确保在使用上述代码时已经安装了Polars库。部分涵盖了Polars支持的各种数据类型,这些类型在创建、操作和转换数据时非常有用。在Polars的Python API中,
2024-10-07 10:27:45 320
原创 Polars 窗口函数指南
Polars的API可能会随着时间的推移而更新,因此建议查看最新的官方文档以获取最新信息。在编写实际代码时,应确保导入Polars库并使用最新版本的API。部分包含了一系列的实用函数,这些函数可以帮助用户进行数据转换、并行化操作、随机数据处理以及字符串缓存管理等。并行化函数用于在多核处理器上并行执行操作。Polars的Python API中的。杂项函数提供了额外的数据处理功能。字符串缓存函数用于优化字符串处理。转换函数用于修改或转换数据。随机函数用于生成随机数据。请注意,这些示例仅展示了。
2024-10-07 10:24:53 639
原创 Polars 自定义函数指南
在 Polars 中,选择器用于在 DataFrame 或 LazyFrame 中选择和操作数据。它们提供了类似于 SQL 选择器的操作方式,使得代码更加简洁和易读。这些示例展示了如何使用选择器来选择列、创建字面量、执行集合操作以及使用条件表达式。通过这些操作,可以有效地对数据进行选择和转换,从而进行更复杂的数据分析。
2024-10-06 11:18:26 200
原创 Polars 分组操作指南
这些例子展示了如何使用Expressions来构建复杂的数据操作,包括聚合、数组操作、布尔值过滤、列别名设置、计算、自定义函数应用、条件表达式和字符串操作。通过使用Expressions,可以在Polars中高效地构建和执行复杂的数据处理任务。Expressions是Polars中用于构建复杂查询的关键组件。它们允许你定义在DataFrame或LazyFrame上执行的操作,而不需要立即执行这些操作。
2024-10-06 11:14:51 340
原创 Polars 上下文指南
这些例子展示了如何使用Series进行各种操作,包括聚合、数组操作、布尔值处理、类别处理、计算、描述性统计、导出、列表操作、选择、填充空值、别名设置、算术运算和字符串操作。通过这些操作,可以有效地处理和分析一维数据。Series是Polars库中的基本数据结构之一,用于表示一维数组。
2024-10-06 11:11:32 311
原创 Polars 表达式指南
这些例子展示了如何使用LazyFrame进行基本的数据操作,如分组、选择、过滤和连接。通过延迟执行,Polars可以更高效地处理大型数据集,并且可以优化查询计划以获得更好的性能。在实际应用中,LazyFrame的这些操作可以与DataFrame的操作无缝结合,为数据处理和分析提供强大的工具。LazyFrame是Polars的一个核心概念,它代表了一种延迟执行的数据框架。这意味着在创建LazyFrame时,并不会立即执行操作,而是在实际需要结果时才进行计算。这种方式对于优化查询和执行大型数据集操作非常有用。
2024-10-06 11:08:37 272
原创 Polars 快速入门
以上是DataFrame部分的详细内容和一些基本的使用例子。这些例子展示了如何使用Polars的DataFrame API进行各种数据操作,包括聚合、选择、过滤、分组、导出、绘图和样式设置等。通过这些操作,用户可以有效地处理和分析数据集。请注意,实际使用时可能需要根据具体的数据和需求调整代码。更多高级功能和详细用法,请参考Polars的官方文档。
2024-10-06 11:05:14 450
原创 Polars简介
高性能:通过Rust编写和矢量化列式处理实现。数据读写支持:支持常见数据文件和云存储。并行处理:自动利用所有可用CPU核心。GPU支持:可选在NVIDIA GPUs上运行查询。安装命令。
2024-10-06 10:51:25 408
原创 30分快速生成llm万能词表
第一部分代码的目的是从大量文本文件中提取分词并统计词频。第二部分代码基于词频统计结果,生成了一个截取的词汇表,用于后续的文本处理或生成任务,同时处理了低频词汇,确保了词汇表的实用性和扩展性。
2024-10-01 10:51:10 237
原创 samout终于超过了transformers(attention)
从图上可以看出cummax 虽然暂时落后 后期 低于 attention且从训练显存上也节约3-5gb且100轮时间上也节约0.5小时以上且推理的时候完全显存空间不变。
2024-09-21 19:14:21 814 7
原创 llm超长序列指代编码sin编码例子
首先定义了一个函数get_sin_em,该函数接受三个参数:序列seq,字典voc和两个可选参数max_len和x_len。其中seq表示输入的字符串序列,voc是一个字典,用于将字符映射为相应的数值,max_len表示最大长度,x_len表示x轴的长度。在函数内部,首先创建了一个长度为x_len的一维数组x,通过np.exp(np.arange(x_len))生成。然后定义一个变量res,并初始化为0。最后调用matplotlib库中的plot函数绘制res的图像,并调用show函数显示图像。
2024-09-07 21:51:08 331
原创 学了这些go 操作 可像python 一样编程了
Go语言被设计为支持高并发编程,其并发模型基于goroutines和channels,这使得在Go中编写高并发程序变得相对简单和直观。高并发编程在Go中是核心特性之一,理解和使用goroutines和channels是编写高效并发程序的关键。Goroutines是Go语言中的轻量级线程,由Go运行时(runtime)管理。这些是Go语言中一些基础的数据类型和操作。理解这些基础是编写有效Go代码的关键。Go语言提供了多种整型,包括有符号和无符号整型,以及不同位数的整型。切片是对数组的一个连续片段的引用。
2024-08-31 13:41:40 1132
原创 传统llm和maxllm对比
如上图9 为传统注意力机制 在隔三岔五的文本输入上取得了很好的成绩 一开始 低于max 版后期可以看出会和max 殊途同归。但是max 版本在推理的时候是可以使用state的推理空间 保持不变。
2024-08-24 12:35:14 179
python matlib 数据建模教程源码
2024-09-22
如何将该神经网络变成大模型
2024-03-23
Python 实现ramdisk
2021-09-11
Lenovo bug我要背锅吗
2021-09-11
谁能告诉我这是谁的锅
2021-09-11
如何发射很少重量的物质到火星就能完成火星地球化
2021-09-11
TA创建的收藏夹 TA关注的收藏夹
TA关注的人