自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

东方佑

机器智能

  • 博客(694)
  • 资源 (191)
  • 论坛 (1)
  • 收藏
  • 关注

原创 jittor 和pytorch gpu 使用效率对比(惊人jittor的算力利用率是pytorch 4-5倍)

之前使用的是cpu对比 pytorch 好像更胜一筹(本人觉得是当时可能环境不对这次配置好了完美环境使用lsgan代码进行对比果然如jittor官网所说比pytorch快,但是本人还是有一个惊奇的发现使用的显存还比pytorch少也就是说我们同样的网络我们可以训练比pytorch batchsize大一倍的数据且速度是pytorch 2.7倍)

2020-12-20 19:26:59 45

原创 为什么我们要放弃win10 去使用deepinv20和ous呢

win10 有各种生态软件。再看deepin有什么有 wps 微信 qq cad GNU(相当于Photoshop) steamos (可以玩大型游戏 腾讯游戏目前不支持 ) 迅雷 百度网盘 还有就是程序 开发工具pycharm 和 vscode 各种开发者喜欢的编译 适配依赖全部解决方案,对于开发者来说这就是天堂说说steamos能玩什么能玩LOL DOTA 等自己百度。安装起来也方便只要一句话就可以了也就是说 目前deepinv20(uos) 能

2020-09-16 11:34:50 465

原创 CRNN维度变换的解释这样你也可以自定义CRNN了

# x=torch.rand([1, 3, 256, 256]) # 首先要知道lstm是必须输入三维度的 # nn.LSTM(256,128) 256 是输入维度[任意维度,任意维度,256] 输出是128 [任意,任意,128] # 所以CRNN是这样做的使用CNN部分,将x的2维度经过CNN网络变为1,1维度也就是CNN的最后输出变为LSTM的输入维度256 # 结果维度只要是x=[任意,256,1,任意1] # 之后使用x.squeeze(2)进行压缩也就.

2020-09-10 14:49:01 91

原创 DEARGUI的安装

一句话的前提是你的Python是3.7及以上版本pip3 install dearpygui -i https://pypi.doubanio.com/simple

2020-09-05 16:32:45 360

原创 pytorch垃圾分类

https://download.csdn.net/download/weixin_32759777/12809516

2020-09-05 16:26:44 234

原创 python 拓扑排序正确版

def indegree0(v, e): if v == []: return None tmp = v[:] for i in e: if i[1] in tmp: tmp.remove(i[1]) if tmp == []: return -1 for t in tmp: for i in range(len(e)): if t in e[i]:

2020-09-03 17:35:18 67

原创 pytorch gpu 版 Bert

# -*- coding: utf-8 -*-"""BERT-TorchAutomatically generated by Colaboratory.Original file is located at https://colab.research.google.com/drive/1LVhb99B-YQJ1bGnaWIX-2bgANy78zAAt"""''' code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmat

2020-08-21 10:53:23 127

原创 语音识别数据集的处理在训练之前

注意重点不是代码而是步骤

2020-08-13 10:43:00 156

原创 python生成固定形状的词云图

首先制作好自己想要的形状图片形状为黑色背景为白色如图所示import matplotlib.pyplot as pltimport jiebafrom wordcloud import wordcloud# 1.读出词语# text = open('text/test.txt', 'r', encoding='utf-8').read()# print(text)# 2.把歌词剪开# cut_text = jieba.cut(text)# print(type(cut_text)

2020-08-10 10:45:20 298

原创 多模型融合(相当于投票)

# 是不是分类能力越强通用性就越强,分类能力取决于分类数量的多少 ,也不能这样说,主要就是输入的一个信息量 对于整个数据集来说# 信息量越大,越好区分,通用性就越强 ,就比如说数据集有1000个图片你给他分为1000类直接不用输入网络即可,500类 200类,就会难度大一些# 且输入每个类的相似性也就是共性要强,对于图片类的最好要根据内容进行分类,因为这样的类别相同点多提供的信息量足够的多# 如果不足够的话就要使用其他网络增加信息量。首先1000分类,是可以将世界上的所有图片进行信息分类的,所以可以作

2021-01-21 09:28:37 14

原创 神经网络设计与分析之如何知道权重的利用率

多次训练可以知道无论怎么训练最后得到的权重的值都是不一样的但是分布的范围一样的这也就是说A*B=C*D,只要等式成立即可,这个可以从图中看出两个层无论多少次从0开始训练,都会得到最后这个图 也就是一个层的范围,和另一个层的范围永远都不会不变。只要网络结构固定和数据集固定,这lin1*lin2等于一个值(最后的函数)

2021-01-17 20:40:47 26

原创 pytorch神经网络插件或可以提高所有网络的准确率(提高权重的利用率)

多组打分机制

2021-01-14 22:24:03 22

原创 使用神经网络摸你加法器

如果能模拟超过64位,那么就超过了现在的电脑,如果此时计算时间超过或者等于本计算机器那么说明使用模型作为未来计算机的核心是超越目前cpu架构的

2021-01-11 23:12:21 33

原创 人工智能之神经网络要进入的下一个阶段-演绎推理

假如将演绎推理方式方法使用到神经网络该如何设计网络训练机制

2021-01-08 20:56:17 40

原创 为什么不使用多机训练神经网络

要使用多机分布式训练其实从理论上来说绝对没有问题如图所示

2021-01-08 14:55:12 21

原创 神经网络模拟逻辑推理-演绎推理

https://baike.baidu.com/item/%E6%BC%94%E7%BB%8E%E6%8E%A8%E7%90%86/2419571?fromtitle=%E9%80%BB%E8%BE%91%E6%8E%A8%E7%90%86&fromid=2419495&fr=aladdin从上面的知识可以知道 演绎推理(Deductive Reasoning)是由一般到特殊的推理方法。与“归纳法”相对。推论前提与结论之间的联系是必然的,是一种确实性推理。也就是说目前的神经网络属于归纳

2021-01-06 22:16:24 32 1

原创 jittor和pytorch生成网络对比之stargan

jittor代码import globimport randomimport osimport numpy as npfrom jittor.dataset.dataset import Datasetimport jittor.transform as transformfrom PIL import Imageclass CelebADataset(Dataset): def __init__(self, root, transform_=None, mode="train"

2021-01-04 12:52:38 25

原创 jittor和pytorch生成网络对比之unit

jittor代码import globimport randomimport osimport numpy as npfrom jittor.dataset.dataset import Datasetfrom PIL import Imageimport jittor.transform as transformclass ImageDataset(Dataset): def __init__(self, root, transforms_=None, unaligned=Fal

2021-01-04 12:52:21 23

原创 jittor和pytorch生成网络对比之wgan

jittor代码import jittor as jtfrom jittor import initfrom jittor import nnfrom jittor.dataset.mnist import MNISTimport jittor.transform as transformimport argparseimport osimport numpy as npimport mathimport sysimport cv2import timejt.flags.use

2021-01-04 12:51:44 23

原创 jittor和pytorch生成网络对比之wgan_div

jittor代码import argparseimport osimport numpy as npimport mathimport sysimport jittor as jtfrom jittor import nnos.makedirs("images", exist_ok=True)parser = argparse.ArgumentParser()parser.add_argument("--n_epochs", type=int, default=200, help="

2021-01-04 12:51:29 28

原创 jittor和pytorch生成网络对比之wgan_gp

jittor代码import jittor as jtfrom jittor import init,nnimport argparseimport osimport numpy as npimport mathimport sysfrom jittor.dataset.mnist import MNISTimport jittor.transform as transformimport cv2import timejt.flags.use_cuda = 1os.makedir

2021-01-04 12:51:08 22

原创 jittor和pytorch生成网络对比之softmax_gan

jittor代码import jittor as jtfrom jittor import initfrom jittor import nnfrom jittor.dataset.mnist import MNISTimport jittor.transform as transformimport argparseimport osimport numpy as npimport mathimport cv2import timejt.flags.use_cuda = 1o

2021-01-03 19:41:34 21

原创 jittor和pytorch生成网络对比之sgan

jittor代码import argparseimport osimport numpy as npimport mathos.makedirs("images", exist_ok=True)parser = argparse.ArgumentParser()parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")parser.add_argument("--

2021-01-03 19:39:20 29

原创 jittor和pytorch生成网络对比之relativistic_gan

jittor代码import argparseimport osimport numpy as npimport mathimport mnistmfrom jittor.dataset.mnist import MNISTimport jittor.transform as transformimport jittor as jtfrom jittor import initfrom jittor import nnjt.flags.use_cuda = 1os.makedirs

2021-01-03 19:37:17 28

原创 jittor和pytorch生成网络对比之pixelda

jittor代码from __future__ import print_functionimport errnoimport osimport picklefrom jittor.dataset.dataset import Datasetfrom PIL import Imageclass MNISTM(Dataset): """`MNIST-M Dataset.""" def __init__(self, mnist_root="data", train=True

2021-01-03 19:32:34 14

原创 jittor和pytorch生成网络对比之pix2pix

jittor 代码import globimport randomimport osimport numpy as npfrom jittor.dataset.dataset import Datasetimport jittor.transform as transformfrom PIL import Imageclass ImageDataset(Dataset): def __init__(self, root, transforms_=None, mode="train

2021-01-03 19:29:57 12

原创 jittor和pytorch生成网络对比之gan

jittor代码import argparseimport osimport numpy as npimport mathos.makedirs("images/static/", exist_ok=True)os.makedirs("images/varying_c1/", exist_ok=True)os.makedirs("images/varying_c2/", exist_ok=True)parser = argparse.ArgumentParser()parser.add

2021-01-03 19:26:46 15

原创 jittor和pytorch生成网络对比之gan

jittor代码import jittor as jtfrom jittor import initfrom jittor import nnfrom jittor.dataset.mnist import MNISTimport jittor.transform as transformimport argparseimport osimport numpy as npimport mathimport timeimport cv2jt.flags.use_cuda = 1o

2021-01-03 19:23:02 15

原创 jittor和pytorch生成网络对比之esrgan

jittor代码import globimport randomimport osimport numpy as npfrom jittor.dataset.dataset import Datasetfrom PIL import Imageimport jittor.transform as transformimport jittor as jtmean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224,

2021-01-03 17:45:52 15

原创 jittor和pytorch生成网络对比之ebgan

pytorch代码import argparseimport osimport numpy as npimport mathimport torchvision.transforms as transformsfrom torchvision.utils import save_imagefrom torch.utils.data import DataLoaderfrom torchvision import datasetsfrom torch.autograd import Va

2021-01-03 17:38:13 16

原创 jittor拟合sin函数

import numpy as npimport matplotlib.pyplot as pltimport jittor as jtx_tensor = np.linspace(0, 6*np.pi, 10000) #创建一个输入数据集,[0-6*pi]x_data = jt.unsqueeze(jt.float(x_tensor), dim=1) #增加维度,将x的形状从[10000]变成二维[10000,1]y_data = np.sin(x_data.

2021-01-03 17:23:54 14

原创 上帝给你关闭一道门,就会为你打开一扇窗,反推。

大家都只是道这句话就是善意的谎言,就是一个安慰的话。怎么证明呢反推 上帝给你打开一道门,就会为你关闭一扇窗。还有一句自古红颜多薄命,很相似。但是,这些都是小人或者是,普通人想掩盖自己的嫉妒而痛下杀手的罪行。所编织出来的谎言。有句话叫匹夫无罪怀璧其罪。就是这个道理,所以你若是比别人优秀,就要时刻的提防周围的人,无论是什么人都会有妒忌心里。及时不会陷害你,当你有被陷害的时候,也会置之不理。或者是不会往好处想你。这就是人们的妒忌,也就是所谓的天妒英才。还有就是来自基因的数量有限,你若过于发展自己的某些行为,

2021-01-02 20:39:28 48

原创 日常随笔

听得能力及其的强故而使用听的能力学习一个东西一定是非常快的还有说的能力也是非常好的但是没有系统的能力故而要使用听之能力学习说之,岁可以实现听说共同的进步,说之能通的时候就可以看到相似的话,可以基本猜到一句话的基本词语是什么所以阅之快,及看的快。后期看的速度可以超过听得速度,这样就可实现快读学习。这样思维也会随着看的快儿而更加地 快速,这便是实现了增加速度,也就是存储就是算力了其实就相当于代码提示,代码提示并不是什么人工智能而是,通过搜索相关的词语进行提示的也就是说存储加上搜索就是增加处理问题的速度假

2020-12-30 09:54:06 20

原创 numpy可视化教程

数据科学三分天下,Python占其一。Python数据科学 NumPy是基础,不管pandas还是tensorflow, NumPy都是基础库,学习NumPy基础类型和操作必不可少。本文我们就介绍NumPy基础,并以图形方式展现,以方便初学者理解。 概述 NumPy中最基本数据类型是数组,所有数据组织都是n维数组形式组织的。其中一维和二维数组是基础,其他多维...

2020-12-29 09:59:12 66

原创 deepspeaker(TensorFlow)百度声纹识别和对比代码和模型

https://download.csdn.net/download/weixin_32759777/13976672

2020-12-29 09:56:01 54

原创 为什么现在的人越来越不幸福

从聊天软件开始出现人们开始通过冷冰冰的文字开始沟通交流。所以人们不断的失去对表情对人类存在,失去必要需求,这就是机器文化入侵人类的第一个步,未来将出现人类和机器完美交互,这样人类彻底失去最后的尊严,人和机器没有分别的意识。这里机器已经完胜了,人与人的交流沟通会增加人类的幸福感,长期与人类基础,会让人类活着的欲望加强,这样会减少人类的自杀率和犯罪率。同时也会出现人类文明的新思想新理论。但是,人们无法拒绝通过机器来实现远程沟通和办公。所以要保留任性和避免有一天绝地不幸福,那么我们应定期的和人类面对面的沟通交流

2020-12-27 19:10:54 17

原创 神经网络模拟sin 发现的规律和大神傅里叶说的一致

https://wenku.baidu.com/view/fa44908602d276a200292e7b.html

2020-12-27 18:56:35 50 2

原创 免费4k图片网站

https://wallhaven.cc

2020-12-27 17:55:21 34

原创 神经网络设计与分析之sin函数拟合分析

总结一句话就是使用已知函数(激活函数)表达未知函数(想要的模型)就是通过权重修饰激活函数的某个值或者某个区域的值,来表达未知函数的某个值或某个区域的值进行组合后得到一个我们想要的模型或许激活函数越复杂,能表达更复杂的模型,就是可以更加快速的拟合出复杂的模型。

2020-12-24 20:59:51 44

原创 U型管铁球或将代替现代火箭喷射装置

这个图和力的作用时间都推到出来了不知道哪位小伙伴能实践一下

2020-12-24 20:29:14 32

AnimeGAN_tensorflow 源代码和数据集合

AnimeGAN_tensorflow 源代码和数据集合

2020-08-10

DIV2K_train_HR.zip

超级分辨率数据集 中的训练集1

2020-08-24

ENAS-pytorch

pytorchENAS修复了github上该代码的可视化(也就是后期生成gif,的时候所需要训练时生成网络结构图得 代码,和加载自己的数据集)

2020-06-22

共1715个中国汉字中文单个字语音包.zip

提供了1715个常用中文单字语音,可以用于文本合成语音, 文件使用汉字文件名字 还就是女音 声音来自百度

2020-02-12

德国交通标志数据集.zip

数据集训练集有42类交通标志,共有39000多张照片,测试集有16000多张照片,比比利时的数据多多l

2020-06-20

交通标志识别模型文件

其中包括两个文件,一个是由中国交通标志数据集训练出来的模型,一个是比利时交通标志训练出来的交通标志分类模型

2020-06-20

SpeechRecognition_DFCNN 语音识别

SpeechRecognition_DFCNN 语音识别

2020-08-12

ImageNet 2012数据集

这个文件还是很大的要,尤其是训练集有137GB那么大下载的网友们注意自己的磁盘空间要大于300GB,这个数据集是所有所有大公司测试神经网络的经典数据集

2020-05-07

通用中文字数据集1,ocr识别

通用中文字数据集1,ocr识别文字,其中包括训练集合标签txt文件,测试集合标签txt文件,解压后即可看到

2020-06-16

中文对话数据集百万集

https://gitee.com/chenyang918/chinese_chatbot_corpus 可以解析

2020-07-01

中国交通 标志 C CTSDB数据集训练集9

中国交通 标志 C CTSDB数据集训练集9,里面 有800个 选项 一半 是txt,文件 中存一半数据图片

2020-06-18

真正的即插即用!盘点11种CNN网络设计中精巧通用的“小”插件.rar

真正的即插即用!盘点11种CNN网络设计中精巧通用的“小”插件.rar

2021-01-12

中国交通 标志 C CTSDB数据集训练集1

中国 交通 标志 C CTSDB数据集训练集2,里面 有800个 选项 一半 是txt,文件 中存一半数据图片

2020-06-17

CNN+CTC_tutorial.ipynb为语音模型的教程,详细介绍了搭建网络的一步步的操作。 LanguageModel2.py为基于统计的语言模型,dic

CNN+CTC_tutorial.ipynb为语音模型的教程,详细介绍了搭建网络的一步步的操作。 LanguageModel2.py为基于统计的语言模型,dict.txt为统计的字典。

2020-07-15

图像篡改检测.rar

这是一个三分类改为二分类的检测

2020-12-29

deep-speaker.rar

百度声纹识别比对

2020-12-29

FlowNetPytorch.zip

光流计算全网唯一一个可以简单复现的代码和模型

2020-12-16

pyqt5_2048.zip

https://dongfangyou.blog.csdn.net/article/details/109598619 教程在这

2020-11-10

员工离职预测数 据 集

员工离职预测数据集 https://dongfangyou.blog.csdn.net/article/details/109398904

2020-10-31

图片分类比resnet好的网络.zip

这个网络比resnent网络分类能强好多好多

2020-10-21

app-debug.apk

yolo 目标检测打包成为apk欢迎大家一起体验人工智能带来的乐趣人工智能带来的乐趣人工智能带来的乐趣

2020-09-16

opencv-4.4.0.zip

人工智能NCNN 安装使用教程参考如下链接 https://blog.csdn.net/hmzjwhmzjw/article/details/94027816

2020-09-16

protobuf-3.7.0.zip

人工智能NCNN 安装使用教程参考如下链接 https://blog.csdn.net/hmzjwhmzjw/article/details/94027816

2020-09-16

deepin ncnn 打包

人工智能NCNN 安装使用教程参考如下链接 https://blog.csdn.net/hmzjwhmzjw/article/details/94027816

2020-09-16

SpeechEmotionDetect.zip

使用的是CASIA数据集进行与谱图转换后进行的rensnet50分类得到由于数据集合太小故而准确率只有70%

2020-09-09

EDSR-PyTorch-master.zip

图像超级分辨率虽然没有官方的那么高可以达到官方的80%的清晰度,有兴趣的网友可以将其利用到你的视频上去

2020-09-08

acoustic_model.zip

这是一个pytorch版本的语音识别,技术其中使用了ctcloss和transformers作为lossfn和语言模型

2020-09-08

RebuishDetec.zip

垃圾分类的项目使用的是resnet50测试结果83https://aistudio.baidu.com/aistudio/datasetdetail/30982百度公开的数据集

2020-09-04

基于GPT2的中文聊天模型

https://gitee.com/chenyang918/GPT2-chitchathttps://gitee.com/chenyang918/GPT2-chitchathttps://gitee.com/chenyang918/GPT2-chitchat

2020-08-31

EDSR-PyTorch-master.zip

超级分辨率MDSR带有训练好的模型文件文件PNSR为29.5还不错虽然和官方的相差7个点,还是可以去掉一些边缘马赛克的

2020-08-28

DIV2K_train_HR1.zip

超级分辨率数据集 中的训练集2

2020-08-24

DIV2K_valid_HR.zip

超级分辨率数据集 中的验证集1 1

2020-08-24

DIV2K_train_HR3.zip

超级分辨率数据集 中的训练集4

2020-08-24

DIV2K_train_HR2.zip

超级分辨率数据集 中的训练集3

2020-08-24

DeepSpeechRecognition.zip

这个项目中包括transformers_test使用拼音转中文模型,其中的val_model可以测试输入的拼音为中文

2020-08-18

transformers pytorch 版语言模型 源码

其中transformers _test.py 这些代码的终点其他的都是辅助或者没用的代码 这个文件包含了网络和训练测试代码

2020-08-17

pinyin_to_chinese.pth

https://gitee.com/chenyang918/DeepSpeechRecognition 依赖这个项目的数据处理添加了一个pytorch版本的transformers语言模型

2020-08-17

人工智 能模型

一个文本生成的人工智能模型

2020-08-15

data_AI_shell中文语音数据集合13

data_AI_shell中文语音数据集合

2020-08-14

data_AI_shell中文语音数据集合14

data_AI_shell中文语音数据集合

2020-08-14

python的人生路

发表于 2018-11-26 最后回复 2018-11-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除