自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

东方佑

机器智能

  • 博客(1775)
  • 资源 (277)
  • 问答 (4)
  • 收藏
  • 关注

原创 芯片病毒检测

【代码】芯片病毒检测。

2024-11-03 20:47:40 30

原创 位置编码和token编码

该代码是一个Python脚本,主要用于生成和可视化一组特定的数据向量。

2024-10-31 21:04:47 300

原创 samout加上相对位置编码提前收敛

整体而言,这个模型似乎是为了处理序列到序列的任务(如机器翻译或文本生成),其中使用了多头注意力和前馈网络来捕捉序列数据中的复杂关系。:解码器层,结合了多头注意力(此处使用MaxState或KAttention)和前馈网络,通过层归一化处理输入数据。:整个模型的主体,包含词嵌入层、位置编码、多个解码器层和一个输出层。该类还定义了状态前向传播方法,用于处理序列数据。:一个前馈网络,包含两个线性层和一个ReLU激活函数,用于对输入数据进行非线性变换。),这些层对输入数据进行处理,并通过累积最大操作进行状态更新。

2024-10-27 16:10:40 334

原创 有向无环图DAG

如果子节点可以有多个父节点,那么我们实际上处理的是一个有向无环图(DAG)而不是树。在DAG中,一个节点可以有多个前驱(父节点)。在这种情况下,我们可以使用广度优先搜索(BFS)来遍历图,但需要注意的是,我们必须确保在遍历过程中不会重复访问节点。请注意,这个例子中的编码是基于节点在BFS遍历中首次被访问的顺序。函数来处理这种情况,例如通过初始化多个根节点来启动遍历。函数,使其能够接受一个根节点列表,并且使用了一个。集合来跟踪已经访问过的节点,以避免重复访问。的子节点,这表明了它可以有多个父节点。

2024-10-24 22:14:53 171

原创 问:该不该调整分词让数据集信息熵更低

信息熵越低,意味着文本中的词分布越不均匀,即某些词出现的频率非常高,而其他词出现的频率较低。该代码的目的是对文本文件进行分词,然后计算词频,并根据词频计算信息熵。将低频词汇的词和对应的计数转换为列表,并扩展每个词的列表为其计数的大小,然后使用。将词汇分为高频词汇(概率大于0.008)和低频词汇(概率小于等于0.008)。将计算得到的概率添加为DataFrame的一个新列。将词频转换为概率,即每个词的出现次数除以总词数。筛选出概率大于0.008的词,并计算信息熵。统计每个词的出现次数,并将结果转换为。

2024-10-20 15:56:50 244

原创 爬取简书后分析2

这段代码的目的是读取一个Pickle文件,对其进行一系列的数据处理和转换,然后保存为CSV文件,并绘制一些图表。这里计算了每增加一个粉丝所需消耗的字数和文章数,通过将"字数"和"文章"列转换为浮点数,然后分别除以"粉丝"列的浮点数值。它原本是用来计算每增加一个总资产单位所需消耗的字数和文章数。如果"总资产"列中的值包含字符"w",则将其替换为"10000",否则保持原值。这里计算了每增加一个"收获喜欢"所需消耗的文章数。将处理后的DataFrame保存为CSV文件,基于"name"列删除重复的行。

2024-10-20 15:02:16 341

原创 爬取简书后分析1

这段代码的主要目的是处理和合并两个Pandas DataFrame对象,并将结果保存为Pickle文件。将合并后的DataFrame保存为Pickle文件,以便后续使用。中的所有DataFrame合并成一个大的DataFrame。这里读取了两个Pickle文件,并将它们分别赋值给变量。库,分别用于数据处理和数值计算。中的数据一一对应起来进行遍历。中的"name"列的值和。

2024-10-20 15:00:10 306

原创 爬取简书后分析0

这段代码的目的是处理和分析一个名为 “jian_shu.pkl” 的 pandas pickle 文件,该文件中包含了从简书网站抓取的数据。

2024-10-19 17:03:39 788

原创 爬取简书0

这段代码是一个使用 Python 语言编写的自动化脚本,目的是使用 Selenium WebDriver 来与网页交互并抓取数据。

2024-10-19 17:00:36 536

原创 爬取简书1

这段代码是一个使用 Python 语言编写的脚本,它使用了 Selenium 库来自动化操作网页浏览器,特别是 Microsoft Edge 浏览器。

2024-10-19 16:56:59 285

原创 python 写一个监控另一个 程序中方法超时与否的服务

【代码】python 写一个监控另一个 程序中方法超时与否的服务。

2024-10-17 21:49:19 327

原创 samout又突破了极限

【代码】samout又突破了极限。

2024-10-15 23:35:50 558

原创 RSA加密

RSA加密算法是一种非对称加密算法,其安全性基于大数分解的困难性。

2024-10-15 21:14:03 751

原创 samout超级加速

【代码】samout超级加速。

2024-10-14 21:32:55 380

原创 Polars 常用操作指南

由于技术限制,我无法直接访问您提供的网页链接。不过,我可以根据 Polars 的官方文档和我所知的信息,为您提供一个关于如何进行常用操作的概括性总结,并包含一些代码例子。

2024-10-11 11:45:00 428

原创 Polars 连接操作指南

外连接是一种连接方式,它保留左 DataFrame 和右 DataFrame 中的所有行,即使它们之间没有匹配的行。左连接是一种连接方式,它保留左 DataFrame 中的所有行,即使右 DataFrame 中没有匹配的行。Polars 支持多种连接操作,允许您将两个或多个 DataFrame 连接在一起。以上代码展示了如何在 Polars 中进行连接操作。更多详细信息和高级用法,请访问。内连接是一种连接方式,它只保留两个 DataFrame 中都有匹配行的行。

2024-10-11 09:45:00 471

原创 Polars 多文件处理指南

它的目标是通过并行化 DataFrame 上的查询,提供一个快速的解决方案。如果您的文件不必位于单个表中,您还可以为每个文件构建一个查询计划,并在 Polars 线程池中并行执行它们。所有查询计划的执行都是极好的并行执行,不需要任何通信。以上是根据您提供的链接内容制作的 Markdown 格式的总结。这段代码将读取所有匹配的文件,并为每个文件构建一个查询计划,最后将所有查询的结果收集到一个列表中。Polars 可以根据您的需要和内存紧张程度,以不同的方式处理多个文件。更多详细信息和高级用法,请访问。

2024-10-10 09:15:00 145

原创 Polars 字符串处理指南

由于使用 Arrow 后端,Polars 中的字符串操作比使用 NumPy 或 Pandas 执行的相同操作快得多。在后者中,字符串存储为 Python 对象。在遍历 np.array 或 pd.Series 时,CPU 需要跟踪所有字符串指针,并跳转到许多随机内存位置——这是非常低效的缓存。在 Polars(通过 Arrow 数据结构)中,字符串在内存中是连续的。因此,对于 CPU 来说,遍历缓存是最优的,也是可预测的。它的目标是通过并行化 DataFrame 上的查询,提供一个快速的解决方案。

2024-10-10 08:45:00 145

原创 Polars DataFrame 行和列选择指南

由于技术限制,我无法直接访问您提供的网页链接。不过,我可以根据 Polars 的官方文档和我所知的信息,为您提供一个关于如何选择 DataFrame 中的行和列的概括性总结,并包含一些代码例子。

2024-10-09 10:00:00 528

原创 Polars 时间戳处理指南

Polars 是一个用 Rust 编写的 DataFrame 库,使用 Arrow 作为其底层数据结构。它的目标是通过并行化 DataFrame 上的查询,提供一个快速的解决方案。以上是根据您提供的链接内容制作的 Markdown 格式的总结。更多详细信息和高级用法,建议您访问 Polars 官方文档以获取完整信息。解析为日期类型,并创建了一个新的 DataFrame。更多详细信息和高级用法,请访问。

2024-10-09 09:15:00 500

原创 Polars 时间序列操作指南

Polars 将下采样视为分组 (groupby) 操作的一个特例,因此表达式 API 为分组上下文 (contexts) 提供了两个额外的入口。动态窗口的大小并不由 DataFrame 中的行数决定,而是由一个时间单位 (temporal unit) 决定,比如一天 () 为单位,把关于 2021 年的日期范围 (date range) 创建为一个 DataFrame。匹配某个动态窗口的值会被分配到该窗口所对应的组中,接下来你可以用强大的表达式方法进行聚合操作。在下面的一段代码中,我们以天 (

2024-10-08 20:15:51 368

原创 Polars 透视操作指南

以上示例展示了如何使用Polars进行不同数据格式的读写操作。在实际应用中,你可能需要指定更多的参数,例如分隔符、编码、压缩选项等,以适应不同的数据源和需求。请确保在使用上述代码时已经安装了Polars库以及可能需要的额外依赖项(例如。请注意,读写数据库需要额外的配置,例如数据库连接字符串和适当的驱动程序。在实际使用中,你可能需要安装并配置相应的数据库驱动。部分涵盖了用于读写不同数据格式的功能。在Polars的Python API中,用于读写Excel文件)。

2024-10-08 08:00:00 495

原创 Polars:从 Apache Spark 过渡指南

请注意,配置选项可能会影响Polars的整体性能和行为,因此应根据具体的使用场景和需求来设置它们。在实际使用中,建议在操作开始之前设置配置选项,并在操作完成后恢复默认设置,以避免对后续操作产生意外影响。以上示例展示了如何设置和获取Polars的配置选项。在实际应用中,你可能需要根据数据处理的需求调整这些选项。请确保在使用上述代码时已经安装了Polars库。部分提供了配置选项,允许用户自定义Polars的行为。在Polars的Python API中,

2024-10-07 10:39:32 745

原创 Polars:从 Pandas 过渡指南

在上述示例中,我们定义了一个Schema,并展示了如何使用它来创建一个DataFrame、验证DataFrame的结构以及修改Schema。在实际应用中,Schema通常用于数据加载和转换过程中,确保数据类型的一致性和正确性。请确保在使用上述代码时已经安装了Polars库。部分定义了DataFrame或Series中列的数据类型和结构。Schema是表的结构描述,它指定了表中每列的名称和数据类型。在Polars的Python API中,是64位浮点数类型,

2024-10-07 10:32:30 890

原创 Polars 索引操作指南

以上示例展示了如何创建不同数据类型的Series并将其添加到DataFrame中。在实际使用中,Polars会自动推断数据类型,但有时可能需要显式指定数据类型以确保正确处理数据。请确保在使用上述代码时已经安装了Polars库。部分涵盖了Polars支持的各种数据类型,这些类型在创建、操作和转换数据时非常有用。在Polars的Python API中,

2024-10-07 10:27:45 320

原创 Polars 窗口函数指南

Polars的API可能会随着时间的推移而更新,因此建议查看最新的官方文档以获取最新信息。在编写实际代码时,应确保导入Polars库并使用最新版本的API。部分包含了一系列的实用函数,这些函数可以帮助用户进行数据转换、并行化操作、随机数据处理以及字符串缓存管理等。并行化函数用于在多核处理器上并行执行操作。Polars的Python API中的。杂项函数提供了额外的数据处理功能。字符串缓存函数用于优化字符串处理。转换函数用于修改或转换数据。随机函数用于生成随机数据。请注意,这些示例仅展示了。

2024-10-07 10:24:53 639

原创 Polars 自定义函数指南

在 Polars 中,选择器用于在 DataFrame 或 LazyFrame 中选择和操作数据。它们提供了类似于 SQL 选择器的操作方式,使得代码更加简洁和易读。这些示例展示了如何使用选择器来选择列、创建字面量、执行集合操作以及使用条件表达式。通过这些操作,可以有效地对数据进行选择和转换,从而进行更复杂的数据分析。

2024-10-06 11:18:26 200

原创 Polars 分组操作指南

这些例子展示了如何使用Expressions来构建复杂的数据操作,包括聚合、数组操作、布尔值过滤、列别名设置、计算、自定义函数应用、条件表达式和字符串操作。通过使用Expressions,可以在Polars中高效地构建和执行复杂的数据处理任务。Expressions是Polars中用于构建复杂查询的关键组件。它们允许你定义在DataFrame或LazyFrame上执行的操作,而不需要立即执行这些操作。

2024-10-06 11:14:51 340

原创 Polars 上下文指南

这些例子展示了如何使用Series进行各种操作,包括聚合、数组操作、布尔值处理、类别处理、计算、描述性统计、导出、列表操作、选择、填充空值、别名设置、算术运算和字符串操作。通过这些操作,可以有效地处理和分析一维数据。Series是Polars库中的基本数据结构之一,用于表示一维数组。

2024-10-06 11:11:32 311

原创 Polars 表达式指南

这些例子展示了如何使用LazyFrame进行基本的数据操作,如分组、选择、过滤和连接。通过延迟执行,Polars可以更高效地处理大型数据集,并且可以优化查询计划以获得更好的性能。在实际应用中,LazyFrame的这些操作可以与DataFrame的操作无缝结合,为数据处理和分析提供强大的工具。LazyFrame是Polars的一个核心概念,它代表了一种延迟执行的数据框架。这意味着在创建LazyFrame时,并不会立即执行操作,而是在实际需要结果时才进行计算。这种方式对于优化查询和执行大型数据集操作非常有用。

2024-10-06 11:08:37 272

原创 Polars 快速入门

以上是DataFrame部分的详细内容和一些基本的使用例子。这些例子展示了如何使用Polars的DataFrame API进行各种数据操作,包括聚合、选择、过滤、分组、导出、绘图和样式设置等。通过这些操作,用户可以有效地处理和分析数据集。请注意,实际使用时可能需要根据具体的数据和需求调整代码。更多高级功能和详细用法,请参考Polars的官方文档。

2024-10-06 11:05:14 450

原创 Polars简介

高性能:通过Rust编写和矢量化列式处理实现。数据读写支持:支持常见数据文件和云存储。并行处理:自动利用所有可用CPU核心。GPU支持:可选在NVIDIA GPUs上运行查询。安装命令。

2024-10-06 10:51:25 408

原创 samout游跨越一次

这段代码定义了一个基于PyTorch的神经网络模型,用于序列到序列的转换任务。

2024-10-04 14:13:19 984

原创 30分快速生成llm万能词表

第一部分代码的目的是从大量文本文件中提取分词并统计词频。第二部分代码基于词频统计结果,生成了一个截取的词汇表,用于后续的文本处理或生成任务,同时处理了低频词汇,确保了词汇表的实用性和扩展性。

2024-10-01 10:51:10 237

原创 samout终于超过了transformers(attention)

从图上可以看出cummax 虽然暂时落后 后期 低于 attention且从训练显存上也节约3-5gb且100轮时间上也节约0.5小时以上且推理的时候完全显存空间不变。

2024-09-21 19:14:21 814 7

原创 llm数据处理之指代平均折叠法

这段代码进一步扩展了之前的逻辑,用于处理文本数据并确定每个折叠位置。

2024-09-15 10:41:44 425

原创 llm超长序列指代编码sin编码例子

首先定义了一个函数get_sin_em,该函数接受三个参数:序列seq,字典voc和两个可选参数max_len和x_len。其中seq表示输入的字符串序列,voc是一个字典,用于将字符映射为相应的数值,max_len表示最大长度,x_len表示x轴的长度。在函数内部,首先创建了一个长度为x_len的一维数组x,通过np.exp(np.arange(x_len))生成。然后定义一个变量res,并初始化为0。最后调用matplotlib库中的plot函数绘制res的图像,并调用show函数显示图像。

2024-09-07 21:51:08 331

原创 学了这些go 操作 可像python 一样编程了

Go语言被设计为支持高并发编程,其并发模型基于goroutines和channels,这使得在Go中编写高并发程序变得相对简单和直观。高并发编程在Go中是核心特性之一,理解和使用goroutines和channels是编写高效并发程序的关键。Goroutines是Go语言中的轻量级线程,由Go运行时(runtime)管理。这些是Go语言中一些基础的数据类型和操作。理解这些基础是编写有效Go代码的关键。Go语言提供了多种整型,包括有符号和无符号整型,以及不同位数的整型。切片是对数组的一个连续片段的引用。

2024-08-31 13:41:40 1132

原创 传统llm和maxllm对比

如上图9 为传统注意力机制 在隔三岔五的文本输入上取得了很好的成绩 一开始 低于max 版后期可以看出会和max 殊途同归。但是max 版本在推理的时候是可以使用state的推理空间 保持不变。

2024-08-24 12:35:14 179

原创 加速samout和loss 更低

【代码】加速samout和loss 更低。

2024-08-18 18:08:58 332

小波神经网络的时间序列预测——短时交通流量预测.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

遗传算法优化BP神经网络——非线性函数拟合.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

神经网络遗传算法函数极值寻优——非线性函数极值寻优.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

思维进化算法优化BP神经网络——非线性函数拟合.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

连续Hopfield神经网络的优化——旅行商问题优化计算.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

离散Hopfield神经网络的分类——高校科研能力评价.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

离散Hopfield神经网络的联想记忆——数字识别.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

决策树分类器的应用研究——乳腺癌诊断.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

极限学习机在回归拟合及分类问题中的应用研究——对比实验.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

基于随机森林思想的组合分类器设计——乳腺癌诊断.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

基于灰色神经网络的预测算法研究——订单需求预测.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

基于SVM的手写字体识别.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

基于SVM的数据分类预测——意大利葡萄酒种类识别.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

基于SVM的回归预测分析——上证指数开盘指数预测..zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

广义神经网络的聚类算法——网络入侵聚类.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

概率神经网络的分类预测--基于PNN的变压器故障诊断.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

动态神经网络时间序列预测研究——基于MATLAB的NARX实现.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

定制神经网络的实现——神经网络的个性化建模与仿真.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

python matlib 数据建模教程源码

python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码

2024-09-22

数学建模程序代码资料合集.zip

数学建模程序代码资料合集

2024-09-22

数学建模导论.zip

数学建模导论

2024-09-22

数学建模30个常用算法(Python代码).zip

数学建模30个常用算法(Python代码)

2024-09-22

源程序_Maltab在数学建模中的应用.zip

源程序_Maltab在数学建模中的应用

2024-09-22

数学模型-超全模型汇总.zip

数学模型-超全模型汇总

2024-09-22

数学模型-超全模型汇总.zip

数学模型-超全模型汇总

2024-09-22

数学建模与数学实验.zip

数学建模与数学实验

2024-09-22

数学建模与数学实验.zip

数学建模与数学实验

2024-09-22

数学建模-历年考题.zip

数学建模-历年考题

2024-09-22

spss中文教程(高清晰PDF格式).zip

spss中文教程(高清晰PDF格式)

2024-09-22

spss统计分析讲义.zip

spss统计分析讲义

2024-09-22

自组织竞争网络在模式分类中的应用—患者癌症发病预测.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

遗传算法优化计算——建模自变量降维.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

神经网络高效编程技巧——基于MATLAB R2012b新版本特性的探讨.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

模糊神经网络的预测算法——嘉陵江水质评价.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

粒子群优化算法的寻优算法——非线性函数极值寻优.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

基于BP_Adaboost的强分类器设计——公司财务预警建模.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

基于Kohonen网络的聚类算法——网络入侵聚类.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除