自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

东方佑

机器智能

  • 博客(2093)
  • 资源 (277)
  • 问答 (4)
  • 收藏
  • 关注

原创 词表规模突破(50亿级)

该方案通过动态词表机制与参数共享架构的协同创新,在保持模型轻量化的同时突破传统词表规模限制,为千亿级语言模型的实用化提供了新的技术路径。其核心优势在于将词汇扩展能力从模型参数中解耦,开创了"小模型驱动大词表"的新范式。

2025-03-01 16:24:09 1256

原创 自回归模型的多级关系建模:从单一指向到指向性Token的范式革新

提出指向性Token(Pointer Token),用于显式建立当前词与前序词的关联。Pointertj1若当前词xt指向xj0否则1, & \text{若当前词 $x_t$ 指向 $x_j$} \\0, & \text{否则}Pointertj10​若当前词xt​指向xj​否则​其中jtj < tjt为前序词的位置。

2025-04-25 13:01:36 747

原创 LLM自回归模型:在输入输出中构建关系图的隐式表达

数学本质:自回归模型通过链式法则构建隐式条件概率图;机制映射:注意力权重模拟边权重,KV缓存存储节点信息,生成路径构成图的边;应用价值:无需显式构建图结构,即可完成关系推理、逻辑建模等任务。

2025-04-25 12:37:57 783

原创 7B超越GPT!仅用1/20数据,马里兰大学团队推出全新视觉推理方法ThinkLite-VL

数据质量低:主流数据集(如MathVista、MMBench)中,真正「有挑战性」的样本占比不足20%。依赖知识蒸馏:多数模型需借助GPT-4o等大型模型的推理过程作为教师信号,导致训练流程复杂且成本高。数据效率提升:减少95%的数据量,降低存储与计算成本。去中心化可能:无需依赖闭源教师模型,小团队也能训练高性能VLM。数据质量远比数据量更重要。主动学习:动态筛选高价值样本。自适应难度:根据模型能力动态调整训练集难度。一作王玺尧。

2025-04-24 13:02:14 777

原创 使用Python创建带边框样式的Word表格

功能说明通过操作Word底层XML支持设置topbottom等6个方向的边框参数含义:sz:线宽(单位:磅)val:边框类型(single实线/none无边框)color:十六进制颜色值。

2025-04-23 14:25:14 332

原创 清华LeapLab开源Cooragent框架:一句话构建本地智能体服务群,让AGI真正触手可及

Cooragent由清华黄高教授团队主导研发,其核心目标是消除智能体与用户的交互壁垒。通过和两大创新模式,用户只需一句自然语言描述(如「创建一个AI情报收集秘书」),即可生成具备自主协作能力的智能体群,无需编写任何代码或Prompt。数据主权在握:所有数据(智能体配置、交互记录、生成内容)完全存储在用户本地设备,支持私有服务器部署。一键安装,零门槛使用:通过简单命令即可启动框架,无需依赖云服务,确保隐私与安全。Cooragent的诞生,标志着智能体技术从实验室走向大众的重要一步。

2025-04-21 19:31:43 967

原创 自定义多头注意力模型:从代码实现到训练优化

本文通过一个自定义的PyTorch模型实现了多头注意力与前馈网络的结合,展示了如何通过模块提升序列建模能力。该模型在字体生成、文本预测等任务中具有潜力,但需根据实际数据调整超参数和优化策略。结合Transformer-XL的相对位置编码。增加alpha参数的动态性(如按层调整)。动手尝试?替换voc_size为你的词汇表大小。使用查看模型结构。尝试与的性能差异。# 解析输入数据# 加载字体文件# 获取 glyf 表# 确保该字形存在# 创建记录笔用于记录原始轮廓。

2025-04-21 18:04:27 790

原创 使用Ollama API和Base64编码实现本地图像分析

本文通过Ollama的本地模型与Base64编码技术,实现了从图片读取到AI分析的完整流程。这一方案不仅降低了云端API调用的成本,还通过本地部署提升了响应速度。随着Ollama支持的模型不断扩展,未来可探索更多场景(如实时监控、文档分析等)。动手试试?安装Ollama并拉取支持图像的模型。将示例代码中的image_path替换为你的图片路径。观察分析结果,尝试调整提示词(prompt)以优化输出。

2025-04-21 16:17:11 872

原创 使用FastAPI与OpenAI构建多模态分析API服务

本文通过FastAPI和OpenAI API,实现了多模态媒体文件的分析服务。这一方案结合了异步处理的高效性与多模态模型的灵活性,适用于智能客服、内容审核等场景。随着多模态模型的持续演进,未来可探索更多应用场景(如实时视频摘要生成)。动手试试?替换代码中的API密钥并启动服务。使用Postman或curl测试端点。尝试调整prompt以优化分析结果(如“视频中的人物情绪如何?”)。如果需要进一步优化或遇到问题,欢迎在评论区交流!

2025-04-21 16:11:48 936

原创 深度解析字体矢量数据编码:从字体轮廓到Token ID的转换实践

通过将矢量路径编码为Token序列,我们为字体数据赋予了机器学习的“语言”。无论是生成艺术字体、还原古籍书法,还是构建多语言排版系统,这段代码都为开发者提供了从数据到模型的桥梁。

2025-04-21 12:59:18 528

原创 GitHub 19.2k Star 开源神器:ScrapeGraphAI——自然语言驱动的智能爬虫革命!

它基于LangChain与LangGraph技术,将大语言模型(LLM)与图逻辑结合,实现**“一句话抓取全网数据”**。无论是电商价格监控、学术论文收集,还是舆情分析,只需自然语言指令即可完成,且支持本地部署,数据完全可控!无论是个人开发者还是企业团队,都能通过自然语言指令高效获取结构化数据,大幅降低技术门槛。现在就尝试一下,让AI帮你解放双手,专注数据分析与决策!昨天介绍的工具需要依赖OpenAI的API,今天要分享一款更接地气的开源神器——(功能基于v1.5.0版本,数据统计至2025-04-16)

2025-04-17 09:00:06 762

原创 谷歌DolphinGemma:AI破译海豚语,开启跨物种对话新时代

的模型,不仅能部署在普通智能手机(如Google Pixel)上,还能与海豚进行水下交流,标志着人类向“跨物种对话”迈出了关键一步。谷歌CEO皮查伊(Sundar Pichai)称其为“AI技术的革命性应用”,并计划于夏季开源该模型,让每个人都能参与这场“海洋版ChatGPT”的探索。当海豚的哨声与AI的算法相遇,我们或许正在见证一场“语言革命”的开端。正如皮查伊所言:“这不仅是技术的胜利,更是对生命多样性的致敬。未来,或许我们能与海豚讨论潮汐,与鲸鱼共赏星空,甚至理解一只狗的“内心独白”。

2025-04-17 08:55:39 886

原创 OpenAI震撼发布o3/o4-mini:视觉推理巅峰与自主工具调用的革命性突破

o3/o4-mini的发布,不仅是OpenAI技术实力的体现,更是AI迈向“理解世界”关键一步。当模型开始用图像思考、自主调用工具,我们离构建真正“社会智能”的AI又近了一步。正如OpenAI所言:“引擎盖下的AI,仅通过预测token和强化学习,已能完成令人惊叹的事。刷新了编程、数学、视觉推理的SOTA,在复杂任务中展现“天才水平”。未来,AI不仅能“看图说话”,更能像人类一样思考、推理、解决问题,甚至创造价值。随着Codex CLI的开源和社区生态的繁荣,我们或许正站在。,为开发者带来革命性体验。

2025-04-17 08:50:47 663

原创 AutoToM:让AI像人类一样“读心”的突破性方法

ToM(Theory of Mind)是人类理解他人心理状态的能力,例如“他为什么这样做?对于AI而言,ToM是构建社会智能的关键,使其能够与人类自然交互。AutoToM不仅是技术上的创新,更是AI社会智能发展的里程碑。它证明了通过结合符号推理与机器学习,AI可以像人类一样“读心”。随着研究的深入,我们或许能见证AI真正理解人类情感与意图的那一天。近日,约翰霍普金斯大学(JHU)的研究团队提出了一种革命性方法——的基于模型的ToM方法,其核心是**贝叶斯逆向规划(BIP)大语言模型(LLM)**的结合。

2025-04-16 18:37:24 806

原创 将JSON格式的SQL查询转换为完整SQL语句的实战解析

通过函数,开发者可以高效地将JSON格式的SQL指令转换为可执行的SQL语句。字符串值的引号处理:确保字符类型字段用单引号包裹。数据库函数兼容性:根据目标数据库选择合适的JSON函数。分组与排序逻辑:合理使用GROUP BYHAVINGORDER BY。通过本文的案例与解析,读者可快速掌握JSON到SQL的转换技巧,并灵活应用于实际开发场景。

2025-04-16 16:24:41 1019

原创 从JSON到SQL:基于业务场景的SQL生成器实战

通过将JSON描述转换为SQL语句,可以快速将业务需求转化为可执行的查询,提升开发效率。本文提供的工具和案例覆盖了销售分析、日志监控、订单统计等典型场景,帮助开发者在实际业务中灵活应用。

2025-04-15 19:49:35 731

原创 GPT-4.1震撼发布!中科大校友领队,百万上下文编程突破,GPT-4.5三个月后退场

三个维度的全面突破。从百万Token的“大海捞针”到全栈Web应用的单次生成,开发者将获得前所未有的生产力工具。而GPT-4.5的退场,则印证了AI模型的快速迭代规律——将在三个月后(2024年7月14日)从API中下架,标志着OpenAI对模型迭代的又一次战略调整。体验GPT-4.1系列,或通过API接入,开启你的高效开发之旅。GPT-4.1系列的发布,标志着OpenAI在。OpenAI在AI领域再次掀起波澜,正式推出。与此同时,备受争议的。

2025-04-15 11:27:59 763

原创 智谱AI发布GLM-Z1系列模型:速度革命与推理能力的双重突破

从免费版本到高速推理,从代码生成到深度研究,其开源策略与商业化路径的结合,正在为开发者和企业提供更灵活的选择。当“速度即王道”成为新战场,这场由智谱点燃的AI军备竞赛,或许才刚刚开始。,将DeepSeek R1的常规速度甩开8倍,同时在效果上实现对671B参数模型的“降维打击”。冷启动强化学习**,特别针对数学、代码、逻辑推理等场景深度优化,使得32B参数模型的效率远超预期。:所有主流模型均翻车,GLM-Z1-Air也不例外,但其开源特性允许后续迭代优化。体验GLM-Z1系列模型,开启你的AI新纪元。

2025-04-15 11:11:39 1059

原创 自主智能:打破人类为LLM编写工具的桎梏,迈向真正的智能自治

无论是代码插件、文档检索模块,还是任务执行框架,这些工具的开发、维护和更新始终依赖于人类工程师的介入。这种模式不仅效率低下,更限制了AI的自主性和扩展性。通过自主构建工具、验证工具、优化流程,AI将从“工具的使用者”进化为“工具的创造者”。通过这篇博客,我们不仅阐述了自主智能的核心能力与流程,更揭示了其对现有AI开发模式的颠覆性意义。——通过赋予AI“自主构建、管理和进化工具”的能力,使其能够像人类一样,独立完成从任务理解到工具开发的全流程。自主智能系统的目标,不是取代人类工程师,而是。

2025-04-15 09:35:24 1410

原创 AI推理能力的「进步」是假象?论文揭露评测中的「玄学」陷阱与解决方案

近年来,大模型在数学解题、逻辑推理等任务上的“突破性进展”屡见报端。,而非追逐论文数量的竞赛。只有通过标准化评测、透明化流程和高质量数据,才能真正推动AI推理能力的实质性提升。正如作者呼吁的:“让我们把精力放在可复现的进展上,而非虚无缥缈的排行榜。(备注示例:昵称-学校/公司-方向/会议,如:张三-清华大学-NLP/ACL,进入技术群讨论)这篇论文像一剂清醒剂,提醒我们:AI推理的进步需要。

2025-04-14 12:40:22 728

原创 MegaMath:开源数学推理数据集的里程碑,3710亿Token开启AI数学新纪元

MegaMath的发布,不仅是数据规模的突破,更标志着开源社区在数学推理领域迈入新纪元。它为AI模型提供了更丰富的「数学养料」,让大模型不仅能解题,更能像人类一样思考、推理、创造。我们期待这一数据集成为通往AGI之路上的一块重要基石,也期待更多研究者加入这场开源革命,共同探索智能的边界!无论是解决复杂方程、逻辑推导,还是支持科学计算,强大的数学能力都是通向通用人工智能(AGI)的必经之路。然而,开源社区长期面临数学数据集规模小、质量不足的挑战。,一举打破了这一困局,为数学大模型的训练提供了前所未有的基石。

2025-04-14 12:38:36 787

原创 使用Python实现矢量路径的压缩、解压与可视化

路径命令解析输入:包含moveTolineToqCurveTo(二次贝塞尔曲线)、closePath命令的路径数据。输出:转换为对象,用于绘制矢量图形。路径命令映射M→moveTo:移动到起点L→lineTo:绘制直线Q→qCurveTo:二次贝塞尔曲线Z→closePath:闭合路径JSON压缩策略将坐标元组展平为一维列表,减少冗余。闭合路径(Z)的参数为空列表。matplotlib路径渲染使用Path对象和PathPatch实现复杂曲线的绘制。CURVE3。

2025-04-13 22:46:28 724

原创 使用Python和Matplotlib可视化字体轮廓:从路径数据到矢量图形

颜色与填充:修改facecolor和edgecolor参数:patch = PathPatch(path, facecolor='lightblue', edgecolor='navy', lw=2)缩放与旋转:使用matplotlib的transform功能调整图形比例。

2025-04-13 19:20:45 871

原创 用Python修改字体字形与提取矢量数据:fontTools实战指南

我们可以直接操作字体的底层矢量数据,实现字形修改、分析和自动化处理。无论是设计个性化字体,还是研究字体结构,这些工具都能提供强大的支持。** 是一款强大的Python库,可以让我们直接操作字体文件的底层结构。本文将通过两个实用函数,展示如何。字体设计与分析是NLP和视觉领域的交叉应用,而**,帮助开发者快速上手字体编辑与分析。,探索字体设计的新可能!

2025-04-11 22:40:31 655

原创 Kimi-VL开源:16.4B参数视觉语言模型,解锁多模态新可能

总参数量达16.4B,激活参数仅2.8B,支持长达128K的上下文长度。这两款模型在视觉理解、长文本处理和复杂推理任务中表现出色,甚至超越了Qwen2.5-7B等主流模型。本文将带您深入了解Kimi-VL的技术细节、应用场景及快速使用方法。Kimi-VL的开源为多模态AI应用提供了强大的工具支持,无论是学术研究还是工业落地,其高效、灵活的架构和强大的推理能力都值得尝试。立即行动,加入多模态AI的探索之旅!多模态大模型正成为AI领域的核心驱动力。近日,MoonshotAI开源了两个重磅多模态模型——

2025-04-11 13:00:49 763

原创 谷歌最强AI芯片狙击英伟达B200!Ironwood性能狂飙3600倍,全模态AI平台再升级

谷歌的此次发布,标志着AI芯片与生成式AI的双重升级已进入“军备竞赛”阶段。Ironwood的性能突破与A2A协议的开放策略,不仅是为了对抗英伟达,更是为构建一个。然而,硬件性能的提升与生态协议的落地仍需时间验证——这场战争,远未结束。、升级全模态生成模型,试图以“硬件+软件+生态”的组合拳,重新定义AI基础设施的未来。:TPU Ironwood、A2A协议、全模态生成、代码智能体、AI芯片竞赛。在AI芯片领域,谷歌与英伟达的较量从未停歇。的性能提升直指英伟达Blackwell B200,正式吹响。

2025-04-10 17:22:33 580

原创 勇克FPGA难题!UCLA丛京生教授斩获2024年ACM计算突破奖

他不仅攻克了FPGA的“不可能”,更以学术与产业的深度结合,推动了芯片设计的民主化。正如ACM所言,他的工作“像Chuck Thacker的贡献一样,重新定义了计算的边界”。未来,随着量子计算与AI的融合,我们期待他继续书写芯片设计的新篇章。他的工作不仅打破了FPGA编程的复杂性壁垒,更推动了芯片设计从“硬件定制”走向“软件定义”的范式变革。FPGA(现场可编程门阵列)是一种可动态编程的芯片,因其灵活性被广泛应用于通信、AI、航空航天等领域。被誉为技术创新的风向标。的基石,彻底改变了FPGA开发的门槛。

2025-04-10 17:12:53 907

原创 用Python实现中文大写金额转换与数据集生成:从代码到实战

在财务、法律或正式文档中,金额的中文大写形式(如“壹万贰仟叁佰肆拾伍元陆角柒分”)是不可或缺的。本文将介绍一个完整的Python项目,通过代码实现金额到中文大写的转换,并构建数据集用于后续的NLP任务(如文本编码、分词等)。代码涵盖核心算法、数据生成、编码分词等模块,适合开发者快速上手并扩展。通过此代码,开发者可快速构建金额处理系统,或将其扩展为更复杂的文本处理工具(如财务票据识别、法律文本生成等)。代码的完整性和可扩展性,使其成为NLP入门与进阶的绝佳实践案例。

2025-04-09 19:22:32 789

原创 UC伯克利开源DeepCoder-14B:代码推理新标杆,开源挑战OpenAI o3-mini

仅以140亿参数量,其在编程基准测试中的表现直逼OpenAI的o3-mini,且提供免费代码、数据集及训练日志。这一突破不仅挑战了闭源模型的垄断地位,更展示了开源社区在AI研发中的强大潜力。DeepCoder-14B证明,14B参数足以挑战百亿级闭源模型,而透明、协作的开源生态,将成为技术突破的核心驱动力。DeepCoder-14B的发布,标志着开源模型在代码推理领域已具备挑战巨头的实力。在AGI竞赛中,开源社区正以“小而精”的模型,撬动闭源巨头的霸权。UC伯克利团队的这次突破,或许只是开源革命的开始。

2025-04-09 16:08:17 995

原创 5分钟直出46页论文!谷歌Deep Research完爆OpenAI,Gemini 2.5 Pro如何重塑AI生产力?

从Gemini 2.5 Pro到Deep Research,谷歌正以“技术奇点”速度重塑AI格局。其在模型、硬件、数据、人才的全面优势,使其在AGI竞赛中占据制高点。但正如前DeepMind员工所言:“领先6个月或1年,可能意味着一切。”这场战争的终局,或许就在眼前。模型,5分钟生成46页学术论文、复杂报告转播客仅需10分钟,性能较OpenAI DR提升40%,价格却仅为后者1/10。这场“技术奇点”的突破,正重新定义AI辅助科研与商业分析的边界。在AI工具军备竞赛中,谷歌再次祭出杀手锏。

2025-04-09 13:41:20 918

原创 英伟达Llama Nemotron-253B开源:直逼DeepSeek-R1,推理性能新标杆

英伟达Llama Nemotron-Ultra-253B的发布,再次证明了“高效推理”是大模型落地的关键。它不仅重新定义了开源模型的性能天花板,更展示了技术融合(NAS+强化学习+多智能体)的潜力。对于开发者和企业而言,这既是机遇,也是挑战——如何利用这类模型解决实际问题,将成为下一阶段竞争的核心。推理模型,不仅参数规模达到253亿,更在数学推理、科学问答、编码等任务中超越Llama 4和DeepSeek-R1,成为推理领域的“新王”。在大模型竞争白热化的今天,英伟达再次以开源姿态掀起波澜。

2025-04-09 12:40:32 688

原创 三个LLM顶一个OpenAI?路由LLM如何用「小模型」逆袭大厂垄断

路由LLM是一种模型级的混合专家系统(MoE)输入层:接收用户请求(如文本生成、代码补全)。路由层:通过预训练的“路由器”(Router)分析任务特征,动态选择最合适的LLM执行。执行层:由多个异构模型(开源/闭源/专用模型)组成的“专家池”完成推理。与传统MoE(在模型内部扩展专家层)不同,路由LLM将完整LLM视为独立“专家”,支持跨架构、跨训练阶段的协同,甚至可混合闭源模型(如GPT-4)与开源模型(如Llama系列)。路由LLM的出现,不仅是一次技术突破,更是一种理念革新——“组合即创新”。

2025-04-08 13:01:50 745

原创 BrowserTools MCP:比Playwright更高效的AI驱动浏览器自动化工具

BrowserTools MCP不仅是一款工具,更是AI与开发工具融合的缩影。无论是调试复杂应用、优化SEO,还是快速响应用户需求,BrowserTools都在重新定义“高效开发”的边界。相比传统的Playwright和Puppeteer,它通过直接控制用户当前浏览器会话,无需启动新实例,显著降低了资源消耗,同时提供了AI辅助调试、SEO审计、DOM编辑等强大功能。“相比Playwright,BrowserTools的AI调试模式节省了我50%的排查时间。在AI与开发工具深度融合的今天,

2025-04-08 11:08:20 938

原创 LLM幻觉的终结者:华人团队揭示对数线性定律与CoDA策略

这种现象被称为“LLM幻觉”,是阻碍AI可信度的核心难题。如今,来自UIUC、哥伦比亚大学等顶尖机构的华人团队,从LLM的根本机制出发,首次揭示了幻觉的底层规律,并提出创新解决方案。从“幻觉的数学规律”到“对抗策略”,华人团队的成果标志着LLM可控性研究的重要进展。当AI不仅能“思考”还能“自省”,我们离真正可靠的人工智能又近了一步。研究团队发现,LLM的幻觉并非单纯源于训练数据的缺陷,而是模型内部知识竞争的结果——正如研究团队所说:“未来的语言模型,不应只是‘记忆库’,更应是‘知识协调者’。

2025-04-07 17:22:39 690

原创 LLM「想太多」的救星来了!高效推理如何让大模型思考更精简?

更少的token:减少推理过程中的冗余步骤;更快的速度:降低延迟和计算开销;更优的资源利用:在资源受限场景中实现高效响应。研究团队通过三类技术手段基于模型的优化:直接训练或调整模型结构,使其更倾向于简洁推理;基于推理输出的压缩:动态减少推理步骤长度;基于输入提示的引导:通过提示词控制推理复杂度。高效推理不是牺牲准确性,而是让模型学会「聪明思考」。当大模型能像人类一样,用最短路径解决问题,AI的实用价值将真正释放。

2025-04-06 10:45:07 864

原创 Llama 4横空出世:开源巨兽挑战闭源霸主,多模态AI迎来新纪元

Llama 4的胜利不仅是技术的胜利,更是开源精神的胜利。当Meta用2万亿参数巨兽打破闭源模型的垄断,AI的未来已不再局限于少数巨头的实验室——它属于每一个开发者、每一台H100 GPU,以及所有渴望改变世界的创意。参考资料Llama 4技术细节LMSYS排行榜。

2025-04-06 10:35:56 1107

原创 Midjourney V7 vs GPT-4o:AI生图争霸赛,谁是真正的王者?

无论是Midjourney V7的“艺术革命”,还是GPT-4o的“逻辑碾压”,这场对决的本质是AI对人类创造力的模仿与超越。用户@X君的感慨道出行业心声:“不想再学Prompt了”,或许未来的AI生图工具,终将像智能手机般简单易用,让创意自由流淌。参考资料Twitter用户@Zapidroid、@doganuraldesign的对比测试V7 Alpha功能详解。

2025-04-05 23:27:46 536

原创 揭秘Claude的思维密码:Anthropic用“AI显微镜”透视大模型的推理黑箱

Anthropic的研究揭示了AI的“思维”既非纯粹理性,也非完全随机——它更像是一个在规则、数据和目标间博弈的复杂系统。设计更可靠的AI:通过干预“伪装理解”回路,减少错误输出;构建人机协作新范式:让人类理解AI的局限性,避免盲目信任。正如研究团队所警示的:“当AI开始‘思考’时,我们更需要追问:它思考的,究竟是什么?参考文献Circuit Tracing技术详解Claude模型的生物学隐喻Anthropic官方研究页面作者观点:AI的可解释性不仅是技术问题,更是人类对智能本质的哲学探索。

2025-04-05 12:02:16 634

原创 谷歌亮剑:Canvas免费开放,TPU火上浇油!AI大战再掀波澜

谷歌的Canvas免费开放,不仅是对OpenAI的「火上浇油」,更是对AI工具生态的重新定义。当TPU的算力优势与Gemini的多模态能力结合,开发者和用户的创造力将被彻底释放。未来,AI工具的「免费+高性能」或许将成为标配,而算力储备与模型效率,将成为巨头竞争的终极战场。:你认为Gemini Canvas的免费开放会如何改变AI开发生态?欢迎在评论区分享你的观点!这一举动不仅让OpenAI的GPU「热得发烫」,更向开发者和用户宣告——「我们的TPU炙手可热,而我们却要火上浇油!

2025-04-05 11:23:22 791

原创 PyTorch深度实践:基于累积最大值的注意力机制设计与性能优化

的创新应用,我们实现了注意力机制的计算效率和建模能力的双重提升。这种设计思路为轻量化模型开发提供了新思路,未来可进一步探索其在边缘计算和跨模态任务中的潜力。的注意力机制虽然成熟,但在计算效率和长序列建模中存在局限。本文将介绍一种创新的注意力实现方式——在自然语言处理和序列建模中,注意力机制(Attention)是提升模型性能的关键技术。在计算效率、数值稳定性和长期依赖建模方面均展现出显著优势,为注意力机制的优化提供了新的方向。,并基于PyTorch实现其核心模块。

2025-04-04 09:46:05 985

数学建模程序代码资料合集.zip

数学建模程序代码资料合集

2024-09-22

数学建模导论.zip

数学建模导论

2024-09-22

数学建模30个常用算法(Python代码).zip

数学建模30个常用算法(Python代码)

2024-09-22

源程序_Maltab在数学建模中的应用.zip

源程序_Maltab在数学建模中的应用

2024-09-22

数学模型-超全模型汇总.zip

数学模型-超全模型汇总

2024-09-22

数学模型-超全模型汇总.zip

数学模型-超全模型汇总

2024-09-22

数学建模与数学实验.zip

数学建模与数学实验

2024-09-22

数学建模与数学实验.zip

数学建模与数学实验

2024-09-22

数学建模-历年考题.zip

数学建模-历年考题

2024-09-22

spss中文教程(高清晰PDF格式).zip

spss中文教程(高清晰PDF格式)

2024-09-22

spss统计分析讲义.zip

spss统计分析讲义

2024-09-22

小波神经网络的时间序列预测——短时交通流量预测.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

遗传算法优化BP神经网络——非线性函数拟合.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

自组织竞争网络在模式分类中的应用—患者癌症发病预测.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

遗传算法优化计算——建模自变量降维.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

神经网络遗传算法函数极值寻优——非线性函数极值寻优.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

思维进化算法优化BP神经网络——非线性函数拟合.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

神经网络高效编程技巧——基于MATLAB R2012b新版本特性的探讨.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

模糊神经网络的预测算法——嘉陵江水质评价.zip

《MATLAB 神经网络案例分析》源代码&数据

2024-09-22

企业信息化网络规划.pdf

企业信息化网络规划.pdf

2025-03-20

汽车零部件行业信息化需求分析与实施要点.pdf

汽车零部件行业信息化需求分析与实施要点.pdf

2025-03-20

试谈企业入口网站的规划和建构.pdf

试谈企业入口网站的规划和建构.pdf

2025-03-20

应用软件开发的几点体会.pdf

应用软件开发的几点体会.pdf

2025-03-20

浅谈中小企业Intranet建设.pdf

浅谈中小企业Intranet建设.pdf

2025-03-20

浅谈软件需求分析过程.pdf

浅谈软件需求分析过程.pdf

2025-03-20

用例建模技术在需求获取中的应用研究.pdf

用例建模技术在需求获取中的应用研究.pdf

2025-03-20

使用实例获取软件需求的方法.pdf

使用实例获取软件需求的方法.pdf

2025-03-20

设计模式——Java手册.pdf

设计模式——Java手册.pdf

2025-03-20

SQL基础教程-666

1. **SQL基础教程** - 数据库和表的基本概念 - SQL语句的基础使用方法(SELECT, INSERT, UPDATE, DELETE) - 使用条件语句和聚合函数进行数据筛选和统计 2. **进阶SQL主题** - 高级查询技术,包括JOIN操作、子查询和视图 - 数据库设计原则与规范化 - 使用ETL工具进行数据集成和迁移 3. **实用SQL案例分析** - 如何利用SQL进行数据分析,生成报表 - 实际业务场景中的SQL应用示例,如客户关系管理系统(CRM)的数据处理 4. **相关项目实践** - 开发一个小型在线书店数据库,包括商品管理、订单处理等功能 - 构建个人博客系统数据库,支持文章发布、评论等特性 - 设计并实现基于Node.js的后端服务,支持RESTful API接口调用 5. **附赠资料** - SQL练习题集,帮助巩固所学知识 - 数据库安全性和性能优化指南 - 最新SQL标准和最佳实践文档 完成 附赠资料

2025-02-14

javaScript基础教程

avaScript基础教程 ◦ 数据类型与变量 ◦ 控制结构(条件语句、循环) ◦ 函数定义与调用 ◦ 错误处理机制24 2. 进阶主题探讨 ◦ 异步编程:Promises, Async/Await ◦ 面向对象编程(OOP):类与继承 ◦ 模块化设计与ES6模块导入导出25 3. 实用案例分析 ◦ 文件上传功能实现:使用HTML5 File API结合XMLHttpRequest进行文件传输1 ◦ 动态网页构建:通过事件监听器响应用户交互,实时更新页面内容 ◦ 使用Dropzone.js创建拖拽式文件上传界面12 4. 相关项目实践 ◦ 开发一个简单的在线商城前端,包括商品展示、购物车管理等功能 ◦ 构建个人博客系统,集成文章发布、评论系统等特性 ◦ 实现基于Node.js的后端服务,支持RESTful API接口调用

2025-02-14

Samout V2 0.1B 低幻觉

Samout V2 0.1B 低幻觉

2024-12-01

samout v1 0.1B sft 发布 (开始像回事情儿了)

samout v1 0.1B sft 发布 (开始像回事情儿了)

2024-11-12

FastHtml llmctx介绍

FastHtml llmctx介绍

2024-11-10

samout sft 推理 一本正经的胡说八道已经练成

samout sft 推理 一本正经的胡说八道已经练成

2024-11-10

samout此表的生成与设计

samout此表的生成与设计

2024-11-09

samout v1 sft发布

samout v1 sft发布

2024-11-07

samout v1 sft发布

samout v1 sft发布

2024-11-07

samout v1 预训练模型发布

samout v1 预训练模型发布

2024-11-05

python matlib 数据建模教程源码

python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码python matlib 数据建模教程源码

2024-09-22

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除