- 博客(1948)
- 资源 (277)
- 问答 (4)
- 收藏
- 关注

原创 SamOut v3 发布-感叹转义词表能力太强【用em(voc_size=8000多,h)表达2000w 词汇 竟还能,表达5000w词汇,怎一个愁字了得】
综上所述,这段代码实现了一个可以与用户对话的系统,能够接收用户的输入并根据上下文生成相应的回应。特别是通过使用Polars代替传统的Pandas进行更高效的内存管理和更快的数据操作,以及利用tqdm库为长时间运行的任务添加了直观的进度反馈机制。函数,它的目的是根据给定的提示生成新的token序列。每当需要生成下一个token时,就会调用模型预测最有可能出现的下一个字符或单词,并通过一些策略(如温度采样、top-k采样等)选择最终输出的token。最后,将模型设置为评估模式,并返回模型和词汇表的数据结构。
2025-01-12 16:11:25
1612
4
原创 4万 Star!一个低成本微调DeepSeek的开源方案悄然走红
Colossal-AI不仅致力于降低大模型预训练的成本,还旨在成为开发者开箱即用的最佳后训练工具箱,助力用户基于开源模型快速构建私有模型。无论是资金充足的开发团队还是预算有限的小型企业,都能从中受益,找到适合自己的解决方案。如果您对本文有任何意见或建议,请留言交流。让我们共同探索前沿技术带来的无限可能。
2025-02-19 13:58:21
231
原创 Grok尚未引起轰动,OpenAI便推出新基准:百万美元测试中Claude斩获40万!
尽管Claude 3.5 Sonnet在这次测试中表现出色,但OpenAI似乎并没有急于推出自己的顶级编码模型参与竞争。或许正如文章所推测的那样,OpenAI希望通过这种方式避免给人留下“自卖自夸”的印象,从而保持公众对其评测标准的信任度。无论如何,随着技术的进步,我们有理由相信未来的AI将能够在更多复杂的软件工程任务中展现出更加卓越的表现。对于广大开发者和技术爱好者来说,这意味着更多的可能性和挑战等待着我们去探索。开源地址新基准介绍。
2025-02-19 10:59:04
174
原创 RWKV 在多智能体与端侧部署的最新进展
斯坦福大学和弗吉尼亚大学的研究成果不仅展示了 RWKV 模型在多智能体强化学习和端侧部署方面的潜力,也为未来的 AI 发展指明了方向。无论是提升模型的社交推理能力,还是实现轻量化部署,RWKV 都展现出了巨大的应用前景。对于有兴趣深入研究 RWKV 的学者和开发者来说,现在正是一个绝佳的机会。最新的 RWKV-7 架构已经在各类评测中表现出色,超越了许多知名开源模型。同时,RWKV 团队也提供了全面的技术支持和生态奖金激励,鼓励更多的学术研究和技术创新。让我们共同期待 RWKV 在未来带来更多惊喜!
2025-02-19 08:52:07
318
原创 OpenAI前CTO创立「思考机器实验室」:AI领域的最新动向
作为公司的CEO,她在开发开创性AI模型方面发挥了关键作用,包括GPT-3以及ChatGPT。:OpenAI联合创始人之一,负责领导对齐团队,并且是「后训练」团队的重要成员。:曾任OpenAI安全系统负责人,她的技术博客深入、细致,被很多AI研究者视为重要的参考资料。「思考机器实验室」不仅仅是一个新的商业实体,它代表了AI领域内一次重大的人才流动和技术创新的机会。在这个快速发展的行业中,这样的动态无疑会激发更多的创新和发展,为未来的AI应用开辟新的道路。
2025-02-19 08:44:42
231
原创 马斯克以20万块GPU铸就Grok-3,力压DeepSeek R1!向OpenAI发起挑战
此次Grok-3的成功发布再次证明了xAI团队在技术创新方面的领先地位。正如马斯克所强调的,“要判断哪家公司会在技术竞争中胜出,关键在于其创新速度的一阶导数和二阶导数。”xAI正沿着这条快速发展的道路稳步前行,不断推动着人工智能领域的进步。
2025-02-18 16:33:39
575
原创 KV Cache的原理
在Transformer模型中,自注意力机制计算每个输入元素与其他所有元素的相关性,时间复杂度为On2,其中n是序列长度。随着序列长度增加,计算量会显著增大,影响推理速度。为了优化这一问题,引入了KV Cache机制。其核心思想是:将历史输入元素的键值对(K和V)缓存起来,当有新的输入元素时,直接利用缓存的K和V计算注意力,避免重复计算,从而提高推理效率。
2025-02-18 09:44:56
325
原创 广州、深圳部署DeepSeek模型优化政务系统
近期,广州和深圳两地的政府部门在政务系统中部署了DeepSeek大模型,旨在优化政务服务,提升城市管理效率,并推动智慧城市的建设。这一举措不仅体现了人工智能技术在公共服务领域的深入应用,也标志着中国地方政府在数字化转型方面迈出了重要一步。
2025-02-17 13:38:59
291
原创 使用Python和OpenCV实现图像像素压缩与解压
Python是一种高级编程语言,以其简洁和强大的库支持而闻名。对于图像处理任务,Python提供了诸如OpenCV这样的库,极大地简化了开发流程。
2025-02-16 23:27:42
521
原创 利用Chatbox与Ollama平台实现DeepSeek R1模型的高效本地化部署与应用
随着大型语言模型(LLMs)的发展,越来越多的研究人员和技术爱好者希望能够在其个人设备上部署这些强大的AI工具。本文旨在介绍一种简便的方法,通过Chatbox与Ollama平台相结合,实现在本地环境中运行DeepSeek R1模型。我们将探讨从安装到使用的全过程,并讨论这种方法对于学术研究、教育和个人项目的潜在价值。
2025-02-15 17:30:15
314
原创 使用LightGBM与Apache Spark进行多分类任务
在大数据环境中,使用机器学习算法处理复杂的分类问题是常见的需求。本文将介绍如何利用Apache Spark和Microsoft Synapse ML库中的LightGBM模型来执行多分类任务。我们将通过一个具体的示例,展示从数据准备到模型训练和评估的完整流程。
2025-02-15 17:25:15
382
原创 今天是情人节
情人节,作为一个象征爱情的节日,已经成为全球许多情侣庆祝和表达爱意的重要时刻。然而,随着商业营销手段的发展,情人节也逐渐被一些人视为消费陷阱。下面我们将从几个角度探讨这个问题,并引用相关资料来支持我们的分析。
2025-02-14 17:02:04
392
原创 如何使用Python扫描多级文件夹下的所有图片
无论是使用os.walk()还是glob模块,都可以轻松处理多层文件夹中的图片查找任务。os.walk()提供了更多的控制和灵活性,而glob则更加直观和简洁。根据你的具体需求和偏好,可以选择最适合的方法。记住,上述提供的代码片段是基本示例,实际应用时可能需要进行适当的调整。例如,如果你想支持更多的图片格式,只需在相关的扩展名列表中添加新的格式。同时,考虑到性能问题,在处理大量文件时,可以考虑采用批量处理或其他优化策略。希望这篇博客能帮助你理解如何使用Python来扫描多级文件夹下的所有图片。
2025-02-14 14:08:26
262
原创 设计一个基于状态(State)作为视觉和文本桥梁的多模态模型
我们的设计方案围绕Segment-Anything Model (SAM) 的输出(SamOut),利用卷积层提取特征,并采用反卷积层重构图像。核心思想是通过引入一种称为“State”的中间表示形式,来桥接视觉和文本信息。具体而言,对于给定的输入图像,我们首先将其分割成多个切片(patches),然后随机选择一个切片(记作e)放在序列的最前面,其余切片按照原始顺序排列。这样构成的输入序列形式为,而对应的输出序列则是。
2025-02-13 10:24:13
722
原创 vSamOut
这一步骤对于 Vision Transformer (ViT) 是非常关键的,因为它将二维图像转换为一系列的一维向量,即所谓的“patch embeddings”。的自定义神经网络模型的实现。类是一个自定义的注意力机制模块,它通过多个线性变换处理输入数据,并使用累积最大值操作来捕获序列中的全局信息。方法中,输入图像被卷积操作分割并投影到指定维度,接着是展平和调整维度的操作,最后加上位置编码(如果启用)。方法首先通过三个不同的线性层处理输入数据,然后通过累积最大值操作聚合信息,最终返回处理后的输出和状态。
2025-02-13 10:22:32
441
原创 动态词表设计:从小说创作到超大规模语言模型的启示
在自然语言处理(NLP)领域,随着深度学习技术的发展,构建能够理解和生成人类语言的大规模语言模型成为了研究热点。然而,随着词汇量的增长,传统的固定大小词表方法面临着计算资源和效率的巨大挑战。本文将探讨一种创新的动态词表设计思路,并通过类比小说创作过程来论证这种方法的有效性。
2025-02-11 20:33:51
320
原创 利用Python和SQLite进行数据处理与优化——从数据库操作到高级数据压缩
特别地,我们将展示如何通过算法实现对数据的有效压缩,以满足内存限制或提高数据传输效率的需求。通过上述步骤,我们不仅能够高效地管理SQLite数据库中的数据,还能运用智能算法对数据进行优化和压缩。记住,随着数据量的增长,合理设计数据结构和采用先进的压缩技术将成为解决大数据问题的关键所在。此函数首先标记输入数组中的连续序列,然后根据不同范围内的数值大小,采用不同的策略对其进行分组和编码,最后生成一个紧凑表示形式。这个过程涉及读取每个表的数据,去除可能存在的索引列,然后横向拼接这些数据框,并最终将其写入新表中。
2025-02-11 20:17:21
381
原创 动态词表采样:一种控制模型词表大小的新方法
随着深度学习技术的发展,尤其是Transformer架构的成功应用,预训练语言模型如BERT、GPT等取得了显著的进步。然而,这些模型通常需要处理庞大的词汇量,这不仅增加了计算成本,也对硬件资源提出了更高的要求。为了解决这个问题,研究人员尝试了多种方法来优化词表管理,其中一种就是基于上下文的动态采样策略。
2025-02-07 20:08:42
1200
原创 使用8192 token_id 表达 4000亿的词表 实战
这段代码展示了如何利用现代数据处理工具和技术来处理文本数据,特别是涉及到词汇表管理和编码的问题。通过使用jieba进行中文分词,结合pandas和polars高效地处理和转换数据,最后应用一种自定义的编码方案来组织词汇信息。这种方法可以应用于需要高效管理和查询大规模词汇表的场景,例如自然语言处理中的词汇管理或信息检索系统。
2025-02-07 10:58:06
375
原创 利用Polars优化中文文本处理流程
我们将演示一个实际应用案例,其中涉及到读取预定义的词汇表文件,对一段英文描述Silhouette Coefficient的文章进行中文分词,并将这些分词结果映射回词汇表ID。本文将探讨如何使用Python中的Pandas和Polars库来优化文本处理流程,特别是当我们需要对中文文本进行分词,并将其映射到预定义的词汇表中时。在这个示例中,我们的数据集是一个包含词汇及其对应ID的pandas DataFrame,这个DataFrame是从一个pickle文件加载而来的。
2025-02-06 13:23:20
324
原创 从Pandas到Polars的词表处理优化案例
然而,需要注意的是,Polars作为一个相对较新的库,在生态系统成熟度上可能不如Pandas。我们将演示一个实际应用案例,其中涉及到读取预定义的词汇表文件,并对其进行分段处理以适应特定的内存限制。本文将探讨如何使用Python中的两个流行的数据处理库——Pandas和Polars来优化词汇表的加载、转换以及分析过程。在这个示例中,我们的数据集是一个包含词汇及其对应ID的pandas DataFrame,这个DataFrame是从一个pickle文件加载而来的。
2025-02-06 13:22:30
294
原创 Qwen2.5-Max:AI技术的新里程碑
实现了高效动态采样,平衡了大规模词表的表达力与计算效率,适用于长序列处理和资源受限场景。通过上述设计,特殊token。
2025-02-04 23:48:20
504
原创 设计一个特殊token以从1亿词表中动态采样8192个词来表达当前序列
实现了高效动态采样,平衡了大规模词表的表达力与计算效率,适用于长序列处理和资源受限场景。通过上述设计,特殊token。
2025-02-04 23:41:06
629
原创 DeepSeek开源大模型引发市场震动,英伟达市值蒸发4万亿
通过上述步骤,我们可以看到,Python及其丰富的库使得处理大规模词汇数据变得既简单又高效。特别是tqdm的进步条功能,极大地提升了用户体验,让用户可以直观地了解数据处理的进度。同时,结合使用Pandas和Polars,可以在保证数据处理速度的同时,也确保了代码的简洁性和可读性。希望这篇博客能为您提供有价值的参考,并激发您在自己的项目中尝试类似的解决方案。如果您有任何问题或想要分享您的经验,请随时留言讨论!
2025-02-03 22:11:55
236
原创 利用Python高效处理大规模词汇数据
通过上述步骤,我们可以看到,Python及其丰富的库使得处理大规模词汇数据变得既简单又高效。特别是tqdm的进步条功能,极大地提升了用户体验,让用户可以直观地了解数据处理的进度。同时,结合使用Pandas和Polars,可以在保证数据处理速度的同时,也确保了代码的简洁性和可读性。希望这篇博客能为您提供有价值的参考,并激发您在自己的项目中尝试类似的解决方案。如果您有任何问题或想要分享您的经验,请随时留言讨论!
2025-02-03 22:09:36
658
原创 硅谷掀桌!DeepSeek遭OpenAI和Anthropic围剿,美国网友先群嘲了
模型蒸馏是一种常见的技术手段,通过将一个大型复杂模型的知识转移到较小且更高效的模型中,以实现性能的提升和成本的降低。OpenAI声称,DeepSeek使用了他们的API数据来“蒸馏”出自己的模型,这违反了OpenAI的服务条款。这些趋势表明,即便没有DeepSeek R1,AI领域的进步依然不可阻挡,而DeepSeek的出现无疑加快了这一进程。面对OpenAI的指控,社会各界的反应不一。无论是OpenAI还是DeepSeek,它们都在努力寻找属于自己的道路,而最终受益的,将是广大用户和技术爱好者们。
2025-02-02 19:58:38
233
原创 OpenAI发布o3-mini:免费推理模型,DeepSeek引发的反思
例如,o3-mini(medium)在数学编码上的表现与前一代o1-mini相当,但响应时间缩短至7.7秒,比o1-mini快了24%。此外,在复杂现实问题处理中,o3-mini的重大错误率降低了39%,显示出更高的准确性和可靠性。与此同时,OpenAI的CEO奥特曼也在Reddit的“有问必答”活动中罕见地公开反思了公司在开源权重AI模型方面的策略失误,并透露了未来的一些计划。例如,在解决复杂的数学问题时,o3-mini展现出了强大的能力,但在其他一些应用场景中,它的表现并未完全超越竞争对手。
2025-02-02 19:55:46
285
原创 OpenAI推出o3-mini推理模型,首次免费开放,性能超越o1,AIME测试准确率高达87.3%
例如,在2024年美国数学邀请赛(AIME 2024)测试中,当设置为高推理强度时,其准确率达到了87.3%,这一成绩不仅超过了前代产品o1-mini,而且在处理复杂问题时展现出了卓越的推理能力。总的来说,o3-mini代表了OpenAI在优化AI推理模型方面取得的新进展,它不仅提高了效率和准确性,还通过灵活的定价策略和免费试用来扩大用户基础。例如,DeepSeek-R1模型的价格明显低于o3-mini,尽管如此,o3-mini在某些特定任务上的表现依然具有竞争力。
2025-02-01 21:04:42
430
原创 OpenAI承认开源策略错误,考虑调整策略并推出o3-mini模型
此外,关于OpenAI是否会完全转向开源,目前还存在不确定性。奥特曼明确表示,虽然他认为公司过去在开源方面站在了历史的错误一边,但这并不是OpenAI当前的首要任务,且公司内部对于是否应全面开源仍存有分歧。OpenAI的首席执行官萨姆·奥特曼(Sam Altman)在最近的一次公开讨论中承认,公司过去在开源方面的策略可能是一个错误,并暗示可能会考虑采取不同的开源策略。例如,在Reddit的“问我任何事”活动中,当被问及是否可以展示模型的完整思维过程时,奥特曼承诺会很快提供更加详细的版本。
2025-02-01 21:03:12
356
原创 特殊Token区域与共享区域
特殊Token区域通常包括一些特定的标识符,它们用于标记文本的不同部分或指示某些操作。例如,开始、结束、填充等标识符就是最常用的特殊Token。这些Token帮助模型理解和处理输入数据的边界以及缺失信息。此外,为了扩展词汇表或者适应不同的任务需求,我们还可以引入词表扩充切换标识符。这类标识符允许模型在处理过程中动态地调整其词汇表,从而更好地适应新的词汇或领域专有术语。
2025-01-30 11:08:40
857
原创 词表设计:特殊Token区域与共享去区域的深入探讨
特殊Token区域通常包括一些特定的标识符,它们用于标记文本的不同部分或指示某些操作。例如,开始、结束、填充等标识符就是最常用的特殊Token。这些Token帮助模型理解和处理输入数据的边界以及缺失信息。此外,为了扩展词汇表或者适应不同的任务需求,我们还可以引入词表扩充切换标识符。这类标识符允许模型在处理过程中动态地调整其词汇表,从而更好地适应新的词汇或领域专有术语。
2025-01-30 10:59:20
1136
原创 PySalsa:灵活强大的Python库,专为网络数据分析设计
PySalsa是一个专门用于网络分析的Python库,其设计目标在于简化网络数据的处理流程,让用户能够更专注于数据分析本身。该模块提供了包括网络构建、节点与边的属性分析、以及网络可视化在内的多种功能。PySalsa模块不仅为网络数据分析提供了强有力的支持,而且通过其简便的操作接口,大大降低了用户的学习成本和使用难度。无论是在学术研究还是工业应用中,PySalsa都能够展现出其独特的价值。希望本文能为有兴趣探索PySalsa的读者提供有价值的参考,并激发更多的创新应用。请注意,上述代码片段是基于假设的。
2025-01-29 08:30:00
441
原创 Nuitka:将Python代码编译为可执行文件的利器
Nuitka 是一款不可多得的工具,特别适合那些寻求更高性能和便捷性的 Python 开发者。虽然在某些情况下可能会遇到一些挑战,但其带来的好处远超过这些问题。通过合理配置和优化,Nuitka 可以为你的项目带来显著的价值。以上内容转自原创文章《Nuitka:将Python代码编译为可执行文件的利器》,旨在帮助读者更好地理解和运用 Nuitka 工具。如果您有任何疑问或建议,请随时留言交流!
2025-01-29 00:45:00
770
原创 USCR:一个强大的 Python 库
USCR 模块的主要功能是从各种数据源中提取信息,包括但不限于文件、数据库、API 等。该模块支持多种数据格式,如文本、JSON 和 XML,并且提供了灵活的查询方式,比如关键词搜索和正则表达式匹配。通过本文的学习,我们了解到 USCR 是一个非常实用且强大的 Python 库,适用于多种数据处理场景。无论你是需要从文本文件、API 还是数据库中提取数据,USCR 都能提供便捷的解决方案。随着数据量的增长和技术的发展,USCR 的潜力也将不断被挖掘出来。
2025-01-28 08:00:00
1591
原创 Qutebrowser:Python程序员的浏览器利器
config.bind(',d', 'download-clear') # 清除下载历史config.bind(',p', 'print') # 打印当前页面config.bind(',s', 'view-source') # 查看源代码Qutebrowser 提供了强大的功能和高度的可定制性,非常适合那些希望通过编程方式提升工作效率的用户。无论是自动化测试还是日常浏览,Qutebrowser 都能成为你得力的助手。希望这篇博客能够帮助你更好地理解和利用 Qutebrowser 的强大功能!
2025-01-28 06:15:00
482
原创 Mistune:世界上最强大的Markdown解析Python库!
Mistune的一大亮点是其高度可扩展的设计。你可以通过继承默认的渲染器类并重写相应的方法来实现自定义渲染逻辑。这段代码会生成一个带有蓝色样式的段落,这仅仅是Mistune强大功能的一个小展示。
2025-01-27 20:12:18
356
原创 HPO3:提升模型性能的高效超参数优化工具
HPO3是一个专注于超参数优化的Python库,它不仅支持多种优化策略如网格搜索、随机搜索和贝叶斯优化等,还强调用户友好性和集成灵活性。无论是新手还是经验丰富的数据科学家,都可以利用HPO3轻松实现复杂的超参数调优任务。
2025-01-27 20:11:09
504
原创 使用Aardio库在Python中创建桌面应用:简单指南
Aardio作为一种轻量级的编程语言,提供了一个绿色版的Python环境,并且能够与Python无缝集成,使得桌面应用的开发变得更加直观和高效。为了确保Aardio可以正确识别你的Python环境,请确保将Python解释器添加到系统的PATH变量中。Aardio不仅简化了GUI的设计过程,还允许我们轻松地嵌入Python代码,这无疑为开发者提供了一种新的、更有效的开发方式。请注意,尽管Aardio仅适用于Windows平台,但它提供了丰富的API和易于使用的GUI设计工具,非常适合快速开发桌面应用。
2025-01-26 11:58:27
523
原创 samout 解析
通过转义词表、参数共享和线性复杂度架构,在保持资源效率的同时实现了模型能力的显著提升。其技术路径为长文本处理和大规模词表支持提供了新思路,未来在垂直领域和动态交互场景中具有广阔应用潜力。
2025-01-26 11:37:25
471
原创 Pynsist:一键打包 Python 应用代码成 Windows 安装程序
Pynsist是一个专门用于创建Windows安装程序的工具,它能够将Python应用程序及其所有依赖项(包括Python解释器)封装在一个易于分发的安装包中。这意味着即使目标机器上没有预先安装Python环境,用户也可以直接运行您的应用程序。总之,Pynsist是一款非常实用且易于上手的工具,特别适合那些需要频繁向非技术背景的用户提供Python应用程序的开发者。通过简化打包过程,它不仅提高了工作效率,同时也保证了最终产品的专业性和可靠性。
2025-01-24 06:30:00
1522
SQL基础教程-666
2025-02-14
javaScript基础教程
2025-02-14
python matlib 数据建模教程源码
2024-09-22
如何将该神经网络变成大模型
2024-03-23
Python 实现ramdisk
2021-09-11
Lenovo bug我要背锅吗
2021-09-11
谁能告诉我这是谁的锅
2021-09-11
如何发射很少重量的物质到火星就能完成火星地球化
2021-09-11
TA创建的收藏夹 TA关注的收藏夹
TA关注的人