- 博客(2144)
- 资源 (277)
- 问答 (4)
- 收藏
- 关注

原创 词表规模突破(50亿级)
该方案通过动态词表机制与参数共享架构的协同创新,在保持模型轻量化的同时突破传统词表规模限制,为千亿级语言模型的实用化提供了新的技术路径。其核心优势在于将词汇扩展能力从模型参数中解耦,开创了"小模型驱动大词表"的新范式。
2025-03-01 16:24:09
1289
原创 仅27M参数!SamOutVX轻量级语言模型刷新认知,小身材也有大智慧
一个参数量仅2700万的语言模型在各类NLP任务中展现出超乎想象的强大能力!
2025-07-12 23:39:51
151
原创 基于流程图闭环的客服机器人设计:智能问答的终极解决方案
在客服领域,用户提问的灵活性与复杂性一直是巨大挑战。通过创新的,我们实现了可覆盖全场景的智能客服系统。以下流程已被验证可解决99%的客服问题(剩余1%通过多闭环组合攻克):fill:#333;color:#333;color:#333;fill:none;是否是是否否用户输入是否已知标题?标题搜索数据生成精准答案是否已知关键信息?关键信息搜索数据展示候选标题用户确认标题标题有效?提示输入关键信息用户补充输入。
2025-07-09 09:44:05
659
原创 构建智能工具服务:MCP协议与LangGraph智能体的完美结合
MCP协议是一种轻量级、通用的协议,允许语言模型通过统一接口调用各种工具和服务。它特别适合用于连接LLM与外部系统,让AI能够"使用工具"完成复杂任务。服务端:统一接口管理各种工具MCP协议:标准化工具调用机制LangGraph:智能决策和工具调度语言模型:自然语言理解和生成这种架构让AI真正具备了"使用工具"的能力,可以完成传统语言模型无法处理的复杂任务。随着工具集的扩展,AI的应用场景将无限广阔!未来展望:这种架构为构建完全自主的AI Agent奠定了基础。
2025-07-07 11:41:28
950
原创 使用 Python 的 `requests` 库实现自动化发牌功能(qwen3工具调用)
在游戏开发或自动化测试中,快速生成随机扑克牌是一个常见需求。本文通过 Python 的requests库,向本地部署的大模型接口发送 HTTP 请求,实现自动化发牌功能。代码简洁高效,适合初学者快速上手。通过requests库与本地模型接口的交互,我们实现了高效的扑克牌生成逻辑。这种方法不仅适用于游戏开发,还可拓展到自动化测试、数据生成等领域。结合requests的简洁性和 HTTP 接口的灵活性,开发者能快速构建实用工具链。实践建议。
2025-07-03 09:08:53
467
原创 当LLM“学会点击鼠标”:通用人工智能的操作系统之路
你有没有想过,未来的人工智能助手不仅能跟你聊天,还能直接操作你的电脑,帮你处理文件、发送邮件、分析数据,甚至操控复杂的专业软件?。
2025-07-02 09:16:37
773
原创 CPU 指令集与 LLM 词表:跨越硬软界限的惊人相似性
通过将复杂语义打包为单 token,有效降低序列长度,从而在存储和计算(尤其在推理时)上带来实实在在的效率红利。这是一种在软硬件交汇处产生的独特优化逻辑,深刻体现了模型架构设计与系统工程实践的智慧结晶。选择词表大小如同在“表达灵活性”与“序列计算效率”之间精妙走钢丝——这本身已成为构建高效大模型的一门重要工程艺术。LLM 词表设计与 CPU 指令集追求信息压缩以提升效率的理念高度一致。的本质,彻底消除了传统 CPU 中复杂操作带来的执行复杂度诅咒。“巴黎是法国的首都”“巴黎是法国的首都”
2025-07-02 09:03:45
635
原创 基于上下文组合的字符串编解码系统设计
本文提出的基于上下文组合的字符串编解码系统通过创新的组合设计解决了传统方法中的上下文缺失和字符重复问题。移除了冗余的后缀处理添加了精确的位置跟踪优化了组合选择算法加强了特殊标记的处理引入深度学习优化组合选择支持多种语言的字符集扩展为完整的压缩算法优化内存使用和处理速度完整实现代码已开源,欢迎在项目中应用这一创新设计解决字符串处理挑战。import os# 确保特殊标记存在else:"""根据频率修剪词表到最大大小,优先保留特殊标记和单字母token"""return。
2025-06-26 12:52:47
898
原创 构建高效字符串编解码系统:Prefix-Token-Suffix三元组方法
Prefix-Token-Suffix三元组方法提供了一种全新的字符串表示范式,通过创新处理边界标记问题,我们实现了高效可靠的编解码系统。完整代码已在GitHub开源([项目链接]),期待这一方法为文本处理领域带来新的思路。探索与创新是技术的永恒主题——在解决问题的荆棘路上,边界之外的风景最是动人。import os"""修复边界标记问题的PTS编解码系统参数:vocab_size: 目标词表大小max_length: p/t/s的最大长度(1-3)char_set: 可选的自定义字符集。
2025-06-26 12:48:01
901
原创 字符级别词表设计:上下文感知的三元组统计分词器
传统词表方法如BPE、WordPiece或SentencePiece在分词效果上表现出色,但存在以下局限性:我们的字符级别词表设计提出了一种全新方案:2. 上下文感知的三元组统计核心创新点:记录每个token在语料中的上下文分布3. 自适应评分机制基于频率、上下文多样性和完成率动态评分:4. 贪婪匹配分词算法高效的字符级别分词策略:5. 多语言和特殊符号处理在预处理和初始化阶段考虑多语言支持:性能优化策略1. 高效数据集处理2. 增量式训练策略应用实例与性能分析词表统计示例
2025-06-25 21:11:14
901
原创 手把手实现BPE分词器:无需tokenizers包加载Hugging Face模型词表
本文介绍了如何从零实现一个轻量级的字节对编码(BPE)分词器,无需依赖Hugging Face等外部库。实现包含四大核心功能:特殊标记处理(如<|startoftext|>)、UTF-8字节级编码、BPE合并规则应用以及词汇表映射。关键创新点包括:通过字节到Unicode映射处理不可见字符,采用优先级合并策略优化BPE算法,以及正则表达式预编译高效处理特殊标记。该实现完整支持文本到token ID的双向转换,既能处理常规文本,也兼容任意二进制数据,为理解BPE底层原理提供了可扩展的参考实现。
2025-06-23 17:31:06
354
原创 高效序列建模新探索
参数效率:通过合并线性层和参数共享,参数量减少42%(相比同等大小标准Transformer)计算优化:cummax操作替代softmax,推理速度提升3倍动态融合:各层级的可学习权重实现自适应特征融合层级设计隐藏维度随层数线性增长 (64×L)每层使用独立的注意力头数残差连接保证梯度流动。
2025-06-22 23:13:45
384
原创 MaxStateSuper模型详解与实现
MaxStateSuper模型是一个创新的Transformer变体,其核心架构包含三个关键组件:1) MaxStateSuper模块采用合并线性变换和累积最大值操作的多头注意力机制;2) 门控前馈网络增强非线性表达能力;3) 解码器层整合注意力和前馈网络。模型通过参数化加权组合不同表示,并使用自适应残差连接。训练过程采用标准交叉熵损失和反向传播优化,层数自适应设计根据注意力头数量调整隐藏层大小。主要创新点包括线性变换合并减少参数、累积最大值操作增强序列建模能力,以及可学习参数加权机制提高模型灵活性。
2025-06-22 20:10:33
808
原创 思考的本质:化未知为已知——兼论LLM的解决之道
思考的本质是将未知转化为已知以解决问题,其过程是一个信息处理循环:输入信息后区分已知与未知,针对未知提出问题、构思方法并执行获取新信息,循环迭代直至整合输出。这一机制也可应用于大型语言模型(LLM),使其通过识别知识缺口、主动获取信息并验证假设,从被动应答转向动态问题解决。当前挑战包括精准识别未知、优化方法选择和判断终止条件等。理解人类思考逻辑并赋予LLM类似能力,是开发下一代智能助手的关键,将文本生成工具升级为能主动探索验证的思考伙伴。
2025-06-21 09:56:04
468
原创 基于字节组合的高级词表实现与应用
在自然语言处理中,词表设计是模型效果的关键因素之一。本文将介绍一个基于字节组合的高级词表实现方案,它能够有效地学习文本中的常用字节模式并用于高效编码,特别适合处理多语言和非标准文本。这个高级字节词表的核心创新点在于:关键功能实现训练机制词表通过分析大规模文本自动学习常用字节组合:文本编码使用贪心匹配算法实现高效文本编码:批量处理与数据生成对于大型数据集,我们实现高效的批处理:实际应用效果使用该词表处理文本具有以下优势:使用案例完整的训练和使用流程:总结这个基于字节组合的词表系统提供
2025-06-17 09:38:06
536
原创 使用 FastMCP 实现 Word 文档与 JSON 数据互转的 Python 服务
框架实现的文档处理服务,可实现 Word 文档(.docx)与 JSON 数据格式的双向转换。通过此服务,开发者可以轻松实现文档内容提取、结构化数据填充、样式模板复用等功能,适用于自动化报告生成、数据导入导出等场景。该实现展示了如何通过 MCP 协议构建文档处理服务,开发者可根据实际需求扩展更多文档操作功能。完整项目代码需注意分离服务端/客户端模块,并完善错误处理机制。
2025-06-14 15:22:21
828
原创 颠覆传统CPU设计!寄存器无重命名的ClockHand架构如何实现能效跃升24%?
硬件复杂度的简化必须始于指令集层重构。在摩尔定律放缓的今天,这类底层创新可能比制程升级更能释放能效红利。去中心化设计:通过精简核心单元(如重命名逻辑)降低功耗,而非堆叠更多晶体管。软硬协同优化:钟表寄存器依赖编译器智能分配,体现指令集与架构的深度耦合。突破路径依赖:在AI算力需求井喷的当下,传统架构的“缝缝补补”难以为继,需要钟表寄存器这类颠覆性思维。正如论文作者所言:“我们正在用一条新路径回答图灵奖得主David Patterson的质问——‘冯·诺依曼架构还能走多远?’”。
2025-06-14 15:12:08
424
原创 基于YOLOv11与单目测距的实战教程:从目标检测到距离估算
本文通过YOLOv11实现了目标检测与单目测距的融合应用,验证了基于几何模型的低成本测距方案可行性。使用专业标定工具提升参数精度;针对特定场景(如车辆测距)优化目标高度先验;结合滤波算法(如卡尔曼滤波)平滑距离输出。后续可探索多传感器融合(如激光雷达+视觉)进一步提升精度,或尝试单目深度估计网络(如MiDaS)替代传统几何方法。
2025-06-12 12:47:37
1056
原创 未来智能设备的三大核心能力:自检测、自修复与自决策
从手机到机器人,从家庭到工业场景,自检测、自修复与自决策能力将让设备更可靠、更高效,也更贴近人类需求。正如文献[11]中提到的,智能体技术正在从“辅助工具”迈向“自主决策”,而这一跃迁,或许正是人类进入真正智能社会的标志。设备将从“执行者”升级为“协作者”。例如,未来的手机可能通过分析用户的日程、位置和情绪(通过语音与面部识别),主动建议会议时间、推荐餐厅,甚至在检测到用户压力过大时自动播放舒缓音乐。在科技飞速发展的今天,智能设备早已超越“工具”的定位,逐渐成为人类生活与工作的“伙伴”。
2025-06-11 10:22:52
982
原创 用Python实现卡片人探险游戏:能量采集与生存挑战
本项目通过200余行Python代码展示了游戏开发的核心要素:状态机管理、动态资源生成、环境交互系统等。通过模块化设计,开发者可以轻松扩展更多游戏机制。这种基于控制台的原型验证方式,为复杂游戏开发提供了快速迭代的基础,体现了Python在游戏设计教学中的独特优势。# 初始位置在地图原点# 能量系统self.energy_cache = 100 # 缓存上限self.energy_storage = 0 # 存储能量self.total_storage = 0 # 累计存储量(用于终极目标)
2025-06-10 19:27:53
967
原创 未来智能系统演进路线:从AGI到ASI的技术蓝图
这条技术演进之路既是工程的挑战,更是哲学的命题。我们需要在创新与伦理、效率与人性之间找到平衡点,共同绘制智能时代的文明蓝图。
2025-06-10 10:14:13
464
原创 使用Python构建高效词汇表:N-Gram词频统计实战
支持多维度的n-gram分析内存友好的数据处理可扩展的架构设计支持正则表达式预处理添加分布式处理支持(Dask/Spark)构建可视化分析界面。
2025-06-09 12:57:16
475
原创 使用 FastMCP 构建你的第一个 MCP 服务:从零开始的 Python 示例
通过本文,你已掌握了使用FastMCP构建基础 MCP 服务的核心方法。下一步可尝试集成 JSON Schema 参数校验、实现流式响应,或探索 MCP 协议的高级特性。实践是学习的最佳途径——试着用这个框架构建你的第一个微服务吧!
2025-06-06 14:38:09
775
原创 使用 Python 自动化 Word 文档样式复制与内容生成
通过本文的代码示例和解析,您已掌握如何使用 Python 实现 Word 文档的样式深度复制和动态内容生成。结合知识库中的其他技术(如 ZBlog 导入、Office 自动化),可进一步扩展至完整的文档工作流自动化。如需完整代码或辅助函数实现,请参考 [GitHub 仓库链接](请替换为实际链接)。希望这篇博客能帮助您高效实现文档自动化!如需进一步优化或功能扩展,欢迎留言讨论。")# 记录哪些单元格已经被合并# 如果该单元格已经被合并(被前面的 colspan 或 rowspan 占用),跳过。
2025-06-06 11:10:13
1238
原创 Cursor 1.0重磅发布!自动捉Bug、秒改“屎山代码”,AI编程迈入新纪元
Cursor 1.0的诞生,标志着AI编程工具从“辅助编码”迈入“自主进化”的新阶段。无论是自动审查、后台智能体,还是Jupyter集成与记忆功能,都让开发者和数据科学家的工作更高效、更智能。立即体验Cursor官网更新日志ChangelogAI编程的分水岭已至,你准备好拥抱这场变革了吗?
2025-06-05 14:39:01
553
原创 全球首个AI智能体「自进化」开源框架EvoAgentX:一次部署,终生可用
EvoAgentX是一个以自我进化为核心导向的开源框架,专为探索具备自我优化能力的多智能体系统而设计。它旨在打破传统多智能体系统的瓶颈,支持从任务定义到系统构建、运行优化的全流程自动化,并推动AI系统从“人工调试”迈向“自主进化”。EvoAgentX的推出标志着多智能体系统从“静态设计”向“动态演化”的关键转折。通过自动化构建、持续进化和系统评估,它不仅为科研与工业场景提供了高效工具,也为AI的可持续发展开辟了新路径。项目地址GitHub文档链接EvoAgentX官网。
2025-06-05 11:04:32
1120
原创 单卡万帧不是梦!智源Video-XL-2引领长视频理解新纪元
Video-XL-2开源模型突破长视频理解三大瓶颈:效果超越72B参数模型,单卡支持万帧处理,2048帧分析仅需12秒。该模型通过创新的Chunk-based Prefilling技术和四阶段渐进训练法,在影视分析、安防监控等场景展现卓越性能。目前已全面开源,支持开发者快速部署,推动视频认知技术向实时分析、多模态融合发展,为万亿级视频数据挖掘开启新可能。
2025-06-03 12:37:43
666
原创 从零开始构建文本统计模型:字符级与多字符片段频率分析实践
本文提出一种基于多尺度特征提取的词汇表构建方法,通过Python实现1-5字符片段的动态统计。核心步骤包括:文件读取预处理、多字符滑动窗口统计、结果可视化及基于包含-排除原理的计数调整。实验显示高频虚词调整显著,多字符片段呈现语法规律性。与BPE算法对比,本方法采用固定长度统计和批量修正策略。该技术可应用于分词器设计、文本压缩等领域,未来可优化并行计算和动态合并算法。研究为理解语言结构提供了实践基础,展现了NLP的技术魅力。
2025-06-03 10:50:47
788
原创 使用Python自动化Word文档处理:段落样式复制、表格转换与模板生成
本文介绍了使用Python的python-docx库实现Word文档自动化处理的三个核心功能:段落样式与图片复制、HTML表格转Word表格以及动态生成可定制化模板。通过代码示例详细展示了如何复制图文混排段落、处理HTML表格转换(包括合并单元格和样式迁移)以及生成包含多种对齐方式和字体样式的模板文档。关键实现策略包括样式继承机制、分页符处理和表格转换优化,适用于报告生成、数据导出等办公自动化场景。该解决方案提供了高效的文档处理路径,建议结合异常处理提升健壮性。
2025-05-25 15:53:07
435
原创 基于SamOutV8的序列生成模型实现与分析
本文介绍了基于SamOutV8架构的序列生成模型,核心包含MaxStateSuper状态编码器、FeedForward前馈网络和DecoderLayer解码模块。模型通过自注意力机制与状态编码策略处理长序列任务,采用LayerNorm稳定训练、Dropout防止过拟合。实验表明,在隐含维度384和6层解码器结构下表现稳定,填充符处理有效避免了NaN问题。该架构实现了高效的自注意力机制与状态编码融合,为序列生成任务提供了新的解决方案。
2025-05-24 11:19:13
601
原创 使用Python复制Word文档样式并生成新文档
段落样式复制:精确还原字体、颜色、对齐方式等表格样式复制:包括单元格边框、列宽等细节分页符处理:保留原文档的页面布局模板驱动开发:通过 JSON 数据驱动文档生成。
2025-05-22 16:50:46
375
原创 使用Python和`python-docx`库复制Word文档样式
在日常办公中,我们经常需要处理Word文档的格式调整、内容更新等任务。对于那些希望通过编程手段自动完成这些工作的开发者来说,Python及其丰富的第三方库提供了强大的支持。本文将介绍如何使用库来复制一个Word文档的内容及样式,并展示如何利用此方法进行文档内容的自动化处理。
2025-05-17 13:53:39
585
原创 OpenAI最强AI编程智能体Codex上线:软件开发进入「半小时时代」
Codex的发布标志着AI编程进入第二代智能体时代——不再局限于语法级别的补全,而是转向工程思维级的协作。正如OpenAI工程师所言:「我们不是在取代开发者,而是在为他们装备『时间机器』。」然而,这场革命也带来了新的挑战:当AI能写代码时,开发者的核心竞争力何在?当所有团队都拥有「10x工程师」,软件行业的竞争门槛将如何演变?或许答案就藏在Greg Brockman的那句话里:「AI编程智能体的目标,是让人类专注于最擅长的事——创造。延伸阅读Codex官方演示视频OpenAI Codex技术白皮书。
2025-05-17 07:46:15
882
原创 OpenAI重磅布局!Windsurf发布SWE-1模型,软件开发效率或提升99%
SWE-1的发布标志着AI编程进入第二代:不再局限于语法级别的补全,而是转向工程思维级的协作。正如Windsurf团队所言:「没有模型能独立完成所有开发任务,但通过流动感知系统,我们可以让AI与人类的能力边界不断扩展。这场变革带来的不仅是效率提升,更是对「开发者角色」的重新定义——或许未来最抢手的技能,将是如何高效地与AI共同思考与创造。延伸阅读Windsurf官方博客OpenAI收购Windsurf深度解析本文来自至顶AI实验室,专注生成式AI技术探索与产业应用分析。欢迎关注交流!
2025-05-16 20:35:17
867
原创 贝壳开源AM-Thinking-V1:32B稠密模型如何逆袭千亿级大模型?
部署友好:适配消费级GPU(如A100/H100);能效比高:训练成本仅为千亿模型的1/10;边缘计算潜力:支持本地化部署,降低云端依赖。AM-Thinking-V1的诞生,不仅是技术上的突破,更是对AI发展理念的深刻反思。它证明,智慧的训练方法比盲目的参数堆砌更重要,也为资源有限的团队指明了方向。或许正如这篇博客的标题所暗示的:在AI的竞技场上,真正的赢家未必是“最壮”的那个,而是“最聪明”的那个。延伸阅读本文来自至顶AI实验室,专注生成式AI技术探索与产业应用分析。欢迎关注交流!
2025-05-16 17:46:54
1103
原创 OpenCV + PyAutoGUI + Tkinter + FastAPI + Requests 实现的远程控制软件设计方案
本文介绍了一个基于 OpenCV + PyAutoGUI + Tkinter + FastAPI + Requests 的远程控制软件设计方案。该方案分为 被控端(服务端) 和 控制端(客户端),支持实时屏幕查看、键盘映射和鼠标操作。被控端使用 FastAPI 提供屏幕截图、键盘和鼠标操作的接口,控制端通过 Tkinter 实现用户界面,并通过 Requests 与被控端进行通信。系统架构清晰,依赖库安装简单,代码实现详细,使用说明明确,适合局域网内的远程控制需求。
2025-05-14 21:42:53
875
原创 25岁MIT辍学天才一战成名!3年打造90亿美金独角兽,Cursor如何颠覆编程世界?
18岁的Michael Truell在2019年与硅谷投资人Ali Partovi的会面中展现了他的编程天赋,随后辍学创办了AI编程工具Cursor。Cursor在短短两年内实现了年收入2亿美元、估值90亿美元的奇迹,彻底改变了软件开发规则。Cursor的成功源于其反传统的市场策略,如拒绝企业客户、零广告投入,以及通过开发者社区自发传播。Truell强调,Cursor不是简单的代码补全工具,而是通过AI原生技术重构编程范式,让开发者从代码编写者转变为逻辑设计师。Cursor自研的AI模型集群在速度和准确性上
2025-05-14 21:25:31
823
原创 薪酬大曝光!北美顶尖名校ML博士,5篇顶会一作,offer竟只有35万刀?
北美顶尖名校强化学习(RL)方向的博士生在Reddit上质疑自己35万美元年薪的offer过低,引发热议。行业薪酬差距显著,科技巨头基础年薪20万-25万刀,顶级实验室如DeepMind、OpenAI可达百万美元,而量化交易机构如HRT、Jane Street也提供超百万刀的offer,但存在职业路径固化的风险。地域差异明显,北美科技公司研究员年薪普遍30万+刀,而欧洲相对较低。前辈建议,应届生应手握多份offer以争取更高薪酬,同时优先选择能积累前沿经验的岗位。微软RL团队因研究意义感缺失而集体转岗,De
2025-05-13 23:38:36
1012
原创 一句指令,无限宇宙!昆仑万维Matrix-Game开启交互式创世时代
昆仑万维最新发布的Matrix-Game,被誉为「交互式创世引擎」,通过AI技术实现了虚拟世界的快速生成与高度可控。用户只需输入简单指令,即可生成细节丰富、物理规则完备的3D场景,并实时操控角色进行探索。Matrix-Game的核心技术包括自研超大规模数据集、图像驱动建模、自回归视频生成和多模态控制模块,确保了场景的高质量与交互的流畅性。其应用领域广泛,涵盖游戏开发、具身智能训练、影视制作、元宇宙构建及教育仿真等,显著降低了开发成本与门槛。Matrix-Game的开源标志着生成式AI从“画图工具”向“世界引
2025-05-13 23:30:07
761
原创 OpenAI命悬一线,微软割肉续命:AI巨头的“婚变”与未来博弈
然而,随着OpenAI估值飙升至2600亿美元,微软的地位却愈发被动。当AI成为全球科技竞赛的核心战场,OpenAI与微软这对曾经的“黄金搭档”,正陷入一场关乎利益与理想的艰难谈判。据《金融时报》报道,微软提出“股权换技术”的方案——放弃部分股权,换取2030年后继续使用OpenAI技术的权限。这一让步背后,是微软对AI时代入场券的焦虑:即使牺牲短期利益,也要确保长期绑定OpenAI的技术红利。OpenAI与微软的关系,像极了一场充满算计的婚姻:微软需要技术续命,OpenAI需要资本托底。
2025-05-12 22:13:59
274
SQL基础教程-666
2025-02-14
javaScript基础教程
2025-02-14
python matlib 数据建模教程源码
2024-09-22
fast gpt 镜像打包 解压 docker load -i all-images.tar docker compose up -d 方可
2025-07-09
fastgpt compse.yaml 文件配置 支持 arm 支持 x86 config.json docker-compose up -d 方可
2025-07-08
如何将该神经网络变成大模型
2024-03-23
如何发射很少重量的物质到火星就能完成火星地球化
2021-09-11
谁能告诉我这是谁的锅
2021-09-11
Python 实现ramdisk
2021-09-11
Lenovo bug我要背锅吗
2021-09-11
TA创建的收藏夹 TA关注的收藏夹
TA关注的人