牛客华为机试第7题python 题目描述写出一个程序,接受一个正浮点数值,输出该数值的近似整数值。如果小数点后数值大于等于5,向上取整;小于5,则向下取整。输入描述:输入一个正浮点数值输出描述:输出该数值的近似整数值示例1输入复制5.5输出复制6x=input()x=float(x)if x%1>=0.5: print(int(x+1))else: print(int(x))...
牛客华为机试第6题python 题目描述功能:输入一个正整数,按照从小到大的顺序输出它的所有质因子(重复的也要列举)(如180的质因子为2 2 3 3 5 )最后一个数后面也要有空格输入描述:输入一个long型整数输出描述:按照从小到大的顺序输出它的所有质数的因子,以空格隔开。最后一个数后面也要有空格。示例1输入复制180输出复制2 2 3 3 5x = int(input())y=2z=[]while x!=y: if x%y==0: z.append(y) x=
牛客华为机试第5题python 题目描述写出一个程序,接受一个十六进制的数,输出该数值的十进制表示。输入描述:输入一个十六进制的数值字符串。注意:一个用例会同时有多组输入数据,请参考帖子https://www.nowcoder.com/discuss/276处理多组输入的问题。输出描述:输出该数值的十进制字符串。不同组的测试用例用隔开。示例1输入复制0xA0xAA输出复制10170while True: x=input() x=x[2:] int(x,16)...
牛客华为机试第4题python 题目描述•连续输入字符串,请按长度为8拆分每个字符串后输出到新的字符串数组;•长度不是8整数倍的字符串请在后面补数字0,空字符串不处理。输入描述:连续输入字符串(输入多次,每个字符串长度小于100)输出描述:输出到长度为8的新字符串数组示例1输入复制abc123456789输出复制abc000001234567890000000while True: try: x = input() if len(x)>8:
牛客华为机试第3题python 题目描述明明想在学校中请一些同学一起做一项问卷调查,为了实验的客观性,他先用计算机生成了N个1到1000之间的随机整数(N≤1000),对于其中重复的数字,只保留一个,把其余相同的数去掉,不同的数对应着不同的学生的学号。然后再把这些数从小到大排序,按照排好的顺序去找同学做调查。请你协助明明完成“去重”与“排序”的工作(同一个测试用例里可能会有多组数据,希望大家能正确处理)。注:测试用例保证输入参数的正确性,答题者无需验证。测试用例不止一组。当没有新的输入时,说明输入结束。输入描述:注意:输入可能有
牛客华为机试第2题python 题目描述写出一个程序,接受一个由字母、数字和空格组成的字符串,和一个字母,然后输出输入字符串中该字母的出现次数。不区分大小写。输入描述:第一行输入一个由字母和数字以及空格组成的字符串,第二行输入一个字母。输出描述:输出输入字符串中含有该字符的个数。示例1输入ABCabcA输出2str=input().lower()chr=input().lower() print(str.count(chr))...
牛客华为机试第1题python 题目描述计算字符串最后一个单词的长度,单词以空格隔开。输入描述:输入一行,代表要计算的字符串,非空,长度小于5000。输出描述:输出一个整数,表示输入字符串最后一个单词的长度。示例1输入hello nowcoder输出8x=input()x=x.split()print(len(x[-1]))...
leetcode算法python第9题 给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false 。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。例如,121 是回文,而 123 不是。示例 1:输入:x = 121输出:true示例 2:输入:x = -121输出:false解释:从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。示例 3:输入:x = 10输出:false解释:从右向左读, 为 01 。因此它不是一个回文数。示
leetcode算法python第8题 请你来实现一个 myAtoi(string s) 函数,使其能将字符串转换成一个 32 位有符号整数(类似 C/C++ 中的 atoi 函数)。函数 myAtoi(string s) 的算法如下:读入字符串并丢弃无用的前导空格检查下一个字符(假设还未到字符末尾)为正还是负号,读取该字符(如果有)。 确定最终结果是负数还是正数。 如果两者都不存在,则假定结果为正。读入下一个字符,直到到达下一个非数字字符或到达输入的结尾。字符串的其余部分将被忽略。将前面步骤读入的这些数字
致物理学家的一个实验 使用多组相对运动最后一组相对第一组会不会超光速时速100地铁上中有时速100的地铁将这个推导为1000000层,条件是摩擦力足够,这么多层同时从静止加速到100,假设每层摩擦为f,那么一百层摩擦为100f,假设将设置为环形运动,最上层或者最内层的物质将会是光速。...
leetcode算法第5题 给你一个字符串 s,找到 s 中最长的回文子串。 示例 1:输入:s = "babad"输出:"bab"解释:"aba" 同样是符合题意的答案。示例 2:输入:s = "cbbd"输出:"bb"示例 3:输入:s = "a"输出:"a"示例 4:输入:s = "ac"输出:"a" 来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/longest-palindromic-substring著作权归领扣网络
leetcode算法第7题 给你一个 32 位的有符号整数 x ,返回 x 中每位上的数字反转后的结果。如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。假设环境不允许存储 64 位整数(有符号或无符号)。 示例 1:输入:x = 123输出:321示例 2:输入:x = -123输出:-321示例 3:输入:x = 120输出:21示例 4:输入:x = 0输出:0来源:力扣(LeetCode)链
leetcode算法第四题 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的中位数。进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗? 示例 1:输入:nums1 = [1,3], nums2 = [2]输出:2.00000解释:合并数组 = [1,2,3] ,中位数 2示例 2:输入:nums1 = [1,2], nums2 = [3,4]输出:2.50000解释:合并数组 = [1,
leetcode算法第三题 给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。 示例 1:输入: s = "abcabcbb"输出: 3 解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。示例 2:输入: s = "bbbbb"输出: 1解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。示例 3:输入: s = "pwwkew"输出: 3解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。&n
用我的亲身经历告诉你创业公司应该招什么样的算法工程师 事先说明如下是自己根据个人经历总结出来,不喜欢勿喷。我不会随意的说谁不好,只是总结自己的个人经历。那么开始本人在一年半的时间中经历了,两个创业公司退市。第一个,经历了一年,本人是在公司初始就参与其中的,老板很年轻(管理经验,和技术经验都没有),和我同龄,对人工智能感兴趣。选择的行业是智能教育,公司起初配备了,几台gtx2080ti的电脑,我也是正式的进入人工智能行业,之前只不过是在公司储备了一些基础知识,和简单的应用。所以没能拥有话语权,负责干活。前三个月负责处理各种复杂的数据结构成为数据集,写加载
leetcode算法第二题python答案 2. 两数相加给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。请你将两个数相加,并以相同形式返回一个表示和的链表。你可以假设除了数字 0 之外,这两个数都不会以 0 开头。 示例 1:输入:l1 = [2,4,3], l2 = [5,6,4]输出:[7,0,8]解释:342 + 465 = 807.示例 2:输入:l1 = [0], l2 = [0]输出:[0]示例 3:输入:l1 = [9,9
leetcode 算法第一题python答案 1. 两数之和给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 的那 两个 整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。你可以按任意顺序返回答案。 示例 1:输入:nums = [2,7,11,15], target = 9输出:[0,1]解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。示例 2:输入:nums = [3,2,4], target
神经网络到底要如何才能模仿人类对话 https://dongfangyou.blog.csdn.net/article/details/1138156691,压缩多模型设计2,要有条件激活区域网路的能力3,要有实时能力针对这三个问题解决方法如下1,使用所谓的多流,其实就是将fc层分开后进行二维或者多维度的排列组合fc2,也就是说神经网络作为一个函数 必须要有定义域和值域 ,其实就是输入输出环境。3,上面俩个达到了基本可以做到实时其实上面基本已经说明了该如何的模仿人类说话办事。就目前来神经网络其实就是一个总结数据规律后对数据
随便创作的文件加密算法不知谁人能破解 with open("","") as f:data=f.read()将二进制文件分开分为几个二进制文件进行保存使用某规则将其改造成谁也打不开使用规则是必须集齐所有碎片才能知道拼接顺序 ,将碎片的sha256中的所有数字提取出来计算抑或之后 取所有字符位置 作为 顺序编码按照正常顺序拼接 与所有数字进行按位计算得到 秘钥。import hashlibimport randomimport base64def get_sha256(b_f):s = hashlib.sha256()
pytorch lstm 写诗文的魔改,测试,猜想 首先目前自然语言处理的网络基本都是transformers的变体。我们就不从热闹了,就使用简单的FC层设计一个,首先一般自然语言都是一个概率问题,所以就是一个分类问题,一般都是有多少的字就分为多少类,一般的输入是语句的编码或者位置编码,一般的输出是一个多组多分类(一句话有多个字这个字是哪个字)。但是,我就想说一句人们做了这么久的分类就是不知道变通吗,就是一直跟着屁股后跑吗。1000个字就一千分类,一万个字就亿万分类。中国有4万个字好吧,请问老师权重数量的堆叠,好意思吗。分类是一个二进制,也就是one
如何自动设计多流网络 实现GPT3大规模神经网路同等规模的网络 https://dongfangyou.blog.csdn.net/article/details/113790338从上面可以知道理论上 模型应为 4x4x4 倍的lenet模型,但是实际loss之比约为20 若是9流网络则约为45 16流约为 80倍。5万参数,相当于400万参数https://zhuanlan.zhihu.com/p/159414219 gpt3 有1750亿80倍 也要 20亿参数 而resnet50只有100万所以要想实现每个计算机都可以执行gpt3 这个级别的
黑暗森林法则和猜疑链同样存在人和人之间 无论宇宙社会学还是人类社会学,人和人之间的猜疑人与人之间的竞争永远存在。无论看似无关的身份还是有关的身份,人类的所有情感全部来自生存本能,这个简单的基本公理。威胁到自己生存的基本公理。智能也是一样,来自生存本能,的基本公理。...
三体问题不可以解决没关系我们能利用就好-宇宙通信猜想 其实不管三体问题对象是天体还是空气,只要是三个有三维自由度的物质,就无法被预测,就像你无法预测空气中的三个氧气分子的位置。但是如果是n体也就是空气,空气是有群体效应的(前提就是他们无法被撞击而粉碎)所以天体的三体问题比微观更加的复杂。根据三体问题,可以知道 这个系统可以将微小的变化放大的超级大,和三极管有点像是吧。所以要谈应用的话利用微观粒子,做到和三极管一样的作用即可。这个东西能探测宇宙中机器微小的变化。就和只有水知道现象一样人类计算和测量n体的群体行为,就可以进行 远程信息测量和检索。若改变
一个具有多模型融合能力的网络或许是这样的 三层四流网络将数据分成了 64 中网络处理能力 也就是 64模型融合 。压缩能力和表现能力远大于任何的网路。且根据矩阵乘法法则可以将网络拆成 任意流网络 假如三层 9流网络 就是 729模型融合。
二流四流神经网路(模型融合矩阵乘法理论实践) 三层四流网络将数据分成了 64 中网络处理能力 也就是 64模型融合 。压缩能力和表现能力远大于任何的网路。且根据矩阵乘法法则可以将网络拆成 任意流网络 假如三层 9流网络 就是 729模型融合。
如何定义经济的网络(后期可以随意剪枝) 这样做的目的是可以方便后期压缩模型其实也可以用在其他的网络上只要你把其他的网络拆开就好因为拆开和一起是一样的 至少从矩阵乘法上看确实如此import torchimport numpy as npimport matplotlib.pyplot as pltimport torch.nn as nnfrom torch.autograd import Variablex_tensor = torch.linspace(0, 6 * np.pi, 10000) # 创建一个输入数据集,[0
deepin V20 启用Nvidia驱动方法 标签:V20 启用 deepin Nvidia 显卡 store下载星火商店:地址:https://gitee.com/deepin-community-store/spark-store/releases【系统工具】>>【任务栏显卡切换插件】快捷链接:spk://store/tools/switch-graphics-card粘贴到浏览器地址栏回车终端执行安装32位支持(steam 和 QQ需要否则无法启动):sudo apt install nvidia-driver-libs
猜想 这样做可能让神经网络更经济 为什么大脑都是吝啬鬼——大脑网络组织中的经济学https://m.thepaper.cn/baijiahao_10952708?sdkver=ab0abe70通过上面的文章可以知道如图10所示。链接密度是链接成本的一种度量方式。效率随链接密度单调递增,但效率与成本的比值在链接密度为20%时达到最大值。下面设计假设了 链接密度 并且设计了如何设计一个网络才能达到链接密度的20%让神经网络最经济# 输入[a,b]# 权重 [b,c]# 输出 [a,c]# sample# input#
语义分割常用loss介绍——及pytorch实现 这里介绍语义分割常用的loss函数,附上pytorch实现代码。 Log loss 交叉熵,二分类交叉熵的公式如下: pytorch代码实现: #二值交叉熵,这里输入要经过sigmoid处理import torchimport torch.nn as nnimport ...
多模型融合(相当于投票) # 是不是分类能力越强通用性就越强,分类能力取决于分类数量的多少 ,也不能这样说,主要就是输入的一个信息量 对于整个数据集来说# 信息量越大,越好区分,通用性就越强 ,就比如说数据集有1000个图片你给他分为1000类直接不用输入网络即可,500类 200类,就会难度大一些# 且输入每个类的相似性也就是共性要强,对于图片类的最好要根据内容进行分类,因为这样的类别相同点多提供的信息量足够的多# 如果不足够的话就要使用其他网络增加信息量。首先1000分类,是可以将世界上的所有图片进行信息分类的,所以可以作
神经网络设计与分析之如何知道权重的利用率 多次训练可以知道无论怎么训练最后得到的权重的值都是不一样的但是分布的范围一样的这也就是说A*B=C*D,只要等式成立即可,这个可以从图中看出两个层无论多少次从0开始训练,都会得到最后这个图 也就是一个层的范围,和另一个层的范围永远都不会不变。只要网络结构固定和数据集固定,这lin1*lin2等于一个值(最后的函数)
神经网络模拟逻辑推理-演绎推理 https://baike.baidu.com/item/%E6%BC%94%E7%BB%8E%E6%8E%A8%E7%90%86/2419571?fromtitle=%E9%80%BB%E8%BE%91%E6%8E%A8%E7%90%86&fromid=2419495&fr=aladdin从上面的知识可以知道 演绎推理(Deductive Reasoning)是由一般到特殊的推理方法。与“归纳法”相对。推论前提与结论之间的联系是必然的,是一种确实性推理。也就是说目前的神经网络属于归纳
jittor和pytorch生成网络对比之stargan jittor代码import globimport randomimport osimport numpy as npfrom jittor.dataset.dataset import Datasetimport jittor.transform as transformfrom PIL import Imageclass CelebADataset(Dataset): def __init__(self, root, transform_=None, mode="train"
jittor和pytorch生成网络对比之unit jittor代码import globimport randomimport osimport numpy as npfrom jittor.dataset.dataset import Datasetfrom PIL import Imageimport jittor.transform as transformclass ImageDataset(Dataset): def __init__(self, root, transforms_=None, unaligned=Fal
jittor和pytorch生成网络对比之wgan jittor代码import jittor as jtfrom jittor import initfrom jittor import nnfrom jittor.dataset.mnist import MNISTimport jittor.transform as transformimport argparseimport osimport numpy as npimport mathimport sysimport cv2import timejt.flags.use
jittor和pytorch生成网络对比之wgan_div jittor代码import argparseimport osimport numpy as npimport mathimport sysimport jittor as jtfrom jittor import nnos.makedirs("images", exist_ok=True)parser = argparse.ArgumentParser()parser.add_argument("--n_epochs", type=int, default=200, help="
jittor和pytorch生成网络对比之wgan_gp jittor代码import jittor as jtfrom jittor import init,nnimport argparseimport osimport numpy as npimport mathimport sysfrom jittor.dataset.mnist import MNISTimport jittor.transform as transformimport cv2import timejt.flags.use_cuda = 1os.makedir
jittor和pytorch生成网络对比之softmax_gan jittor代码import jittor as jtfrom jittor import initfrom jittor import nnfrom jittor.dataset.mnist import MNISTimport jittor.transform as transformimport argparseimport osimport numpy as npimport mathimport cv2import timejt.flags.use_cuda = 1o
jittor和pytorch生成网络对比之sgan jittor代码import argparseimport osimport numpy as npimport mathos.makedirs("images", exist_ok=True)parser = argparse.ArgumentParser()parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")parser.add_argument("--
jittor和pytorch生成网络对比之relativistic_gan jittor代码import argparseimport osimport numpy as npimport mathimport mnistmfrom jittor.dataset.mnist import MNISTimport jittor.transform as transformimport jittor as jtfrom jittor import initfrom jittor import nnjt.flags.use_cuda = 1os.makedirs
jittor和pytorch生成网络对比之pixelda jittor代码from __future__ import print_functionimport errnoimport osimport picklefrom jittor.dataset.dataset import Datasetfrom PIL import Imageclass MNISTM(Dataset): """`MNIST-M Dataset.""" def __init__(self, mnist_root="data", train=True
jittor和pytorch生成网络对比之pix2pix jittor 代码import globimport randomimport osimport numpy as npfrom jittor.dataset.dataset import Datasetimport jittor.transform as transformfrom PIL import Imageclass ImageDataset(Dataset): def __init__(self, root, transforms_=None, mode="train
jittor和pytorch生成网络对比之gan jittor代码import argparseimport osimport numpy as npimport mathos.makedirs("images/static/", exist_ok=True)os.makedirs("images/varying_c1/", exist_ok=True)os.makedirs("images/varying_c2/", exist_ok=True)parser = argparse.ArgumentParser()parser.add
jittor和pytorch生成网络对比之gan jittor代码import jittor as jtfrom jittor import initfrom jittor import nnfrom jittor.dataset.mnist import MNISTimport jittor.transform as transformimport argparseimport osimport numpy as npimport mathimport timeimport cv2jt.flags.use_cuda = 1o
jittor和pytorch生成网络对比之esrgan jittor代码import globimport randomimport osimport numpy as npfrom jittor.dataset.dataset import Datasetfrom PIL import Imageimport jittor.transform as transformimport jittor as jtmean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224,
jittor和pytorch生成网络对比之ebgan pytorch代码import argparseimport osimport numpy as npimport mathimport torchvision.transforms as transformsfrom torchvision.utils import save_imagefrom torch.utils.data import DataLoaderfrom torchvision import datasetsfrom torch.autograd import Va
jittor拟合sin函数 import numpy as npimport matplotlib.pyplot as pltimport jittor as jtx_tensor = np.linspace(0, 6*np.pi, 10000) #创建一个输入数据集,[0-6*pi]x_data = jt.unsqueeze(jt.float(x_tensor), dim=1) #增加维度,将x的形状从[10000]变成二维[10000,1]y_data = np.sin(x_data.
上帝给你关闭一道门,就会为你打开一扇窗,反推。 大家都只是道这句话就是善意的谎言,就是一个安慰的话。怎么证明呢反推 上帝给你打开一道门,就会为你关闭一扇窗。还有一句自古红颜多薄命,很相似。但是,这些都是小人或者是,普通人想掩盖自己的嫉妒而痛下杀手的罪行。所编织出来的谎言。有句话叫匹夫无罪怀璧其罪。就是这个道理,所以你若是比别人优秀,就要时刻的提防周围的人,无论是什么人都会有妒忌心里。及时不会陷害你,当你有被陷害的时候,也会置之不理。或者是不会往好处想你。这就是人们的妒忌,也就是所谓的天妒英才。还有就是来自基因的数量有限,你若过于发展自己的某些行为,
日常随笔 听得能力及其的强故而使用听的能力学习一个东西一定是非常快的还有说的能力也是非常好的但是没有系统的能力故而要使用听之能力学习说之,岁可以实现听说共同的进步,说之能通的时候就可以看到相似的话,可以基本猜到一句话的基本词语是什么所以阅之快,及看的快。后期看的速度可以超过听得速度,这样就可实现快读学习。这样思维也会随着看的快儿而更加地 快速,这便是实现了增加速度,也就是存储就是算力了其实就相当于代码提示,代码提示并不是什么人工智能而是,通过搜索相关的词语进行提示的也就是说存储加上搜索就是增加处理问题的速度假
numpy可视化教程 数据科学三分天下,Python占其一。Python数据科学 NumPy是基础,不管pandas还是tensorflow, NumPy都是基础库,学习NumPy基础类型和操作必不可少。本文我们就介绍NumPy基础,并以图形方式展现,以方便初学者理解。 概述 NumPy中最基本数据类型是数组,所有数据组织都是n维数组形式组织的。其中一维和二维数组是基础,其他多维...
为什么现在的人越来越不幸福 从聊天软件开始出现人们开始通过冷冰冰的文字开始沟通交流。所以人们不断的失去对表情对人类存在,失去必要需求,这就是机器文化入侵人类的第一个步,未来将出现人类和机器完美交互,这样人类彻底失去最后的尊严,人和机器没有分别的意识。这里机器已经完胜了,人与人的交流沟通会增加人类的幸福感,长期与人类基础,会让人类活着的欲望加强,这样会减少人类的自杀率和犯罪率。同时也会出现人类文明的新思想新理论。但是,人们无法拒绝通过机器来实现远程沟通和办公。所以要保留任性和避免有一天绝地不幸福,那么我们应定期的和人类面对面的沟通交流
神经网络设计与分析之sin函数拟合分析 总结一句话就是使用已知函数(激活函数)表达未知函数(想要的模型)就是通过权重修饰激活函数的某个值或者某个区域的值,来表达未知函数的某个值或某个区域的值进行组合后得到一个我们想要的模型或许激活函数越复杂,能表达更复杂的模型,就是可以更加快速的拟合出复杂的模型。
ABA网络 import torchfrom torch import nn编码网络使用两张图片进行拼接作为输入所以最初输出入为6通道class Encoder_net(nn.Module):def init(self):super(Encoder_net,self).init()self.cnn1=nn.Conv2d(6,64,3,2)self.bn1=nn.BatchNorm2d(64)self.cnn2=nn.Conv2d(64,64,3,2)self.bn2=nn.BatchNorm2d(64
jittor和pytorch生成网络对比之dragan pytorch代码import argparseimport osimport numpy as npimport mathimport torchvision.transforms as transformsfrom torchvision.utils import save_imagefrom torch.utils.data import DataLoaderfrom torchvision import datasetsfrom torch.autograd import Va
jittor和pytorch生成网络对比之dcgan pytorch代码import argparseimport osimport numpy as npimport mathimport torchvision.transforms as transformsfrom torchvision.utils import save_imagefrom torch.utils.data import DataLoaderfrom torchvision import datasetsfrom torch.autograd import Va
jittor和pytorch生成网络对比之cyclegan pytorch代码import argparseimport osimport numpy as npimport mathimport itertoolsimport datetimeimport timeimport torchvision.transforms as transformsfrom torchvision.utils import save_image, make_gridfrom torch.utils.data import DataLoaderfrom t
jittor和pytorch网络对比之context_encoder pytorch 代码"""Inpainting using Generative Adversarial Networks.The dataset can be downloaded from: https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AADIKlz8PR9zr6Y20qbkunrba/Img/img_align_celeba.zip?dl=0(if not available there see if options are listed at htt