- 博客(7)
- 收藏
- 关注
转载 深度学习中Dropout原理解析
1. Dropout简介1.1 Dropout出现的原因在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。过拟合是很多机器学习的通病。如果模型过拟合,那么得到的模型几乎不能用。为了解决过...
2019-05-28 21:16:10 759
转载 Batch Normalization三(吴恩达课程笔记,有反向求导过程)
在训练神经网络时,标准化输入可以提高训练的速度。方法是对训练数据集进行归一化的操作,即将原始数据减去其均值后,再除以其方差。但是标准化输入只是对输入进行了处理,那么对于神经网络,又该如何对各隐藏层的输入进行标准化处理呢?其实在神经网络中,第层隐藏层的输入就是第层隐藏层的输出。对进行标准化处理,从原理上来说可以提高和的训练速度和准确度。这种对各隐藏层的标准化处...
2019-05-28 21:15:27 1081
转载 深入理解Batch-Normalization二(有分析BN在测试推理过程参数来源)
Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问。本文是对论文《Batch Normalization: Accelerating Deep Network Training by...
2019-05-28 21:13:35 3199
转载 Batch-Normalization详细解析一(针对Relu分析的,简介明了)
BN目前已经成为了调参师面试必问题之一了。同时,BN层也慢慢变成了神经网络不可分割的一部分了,相比其他优化操作比如dropout, l1, l2, momentum,影子变量等等,BN是最无可替代的。论文标题: 《Batch Normalization: Accelerating Deep Network Training b y Reducing Internal Covariate Shi...
2019-05-28 21:13:06 3361 1
转载 ROIPooling和ROIAlign的特点和区别
一)、RoIPooling 这个可以在Faster RCNN中使用以便使生成的候选框region proposal映射产生固定大小的feature map 先贴出一张图,接着通过这图解释RoiPooling的工作原理 针对上图 1)Conv layers使用的是VGG16,feat_stride=32(即表示,经过网络...
2019-02-05 20:21:51 1915
原创 Ubuntu18.04+RTX2080+cuda10+tensorflow
原 Ubuntu18.04+RTX2080+cuda10+tensorflow 2018年10月18日 21:36:13 Mosay_dhu 阅读数:8664 ...
2019-02-05 17:05:43 1409
原创 easygui安装后在idle上能用,但pycharm上会报错
0. 安装 EasyGui标准方法安装:进官网:http://easygui.sourceforge.net下载、解压easygui安装包 使用命令窗口切换到easygui-docs-0.96的目录下 【Windows下】执行 python setup.py install(设置了环境变量的,直接用python,如果没有设置python的环境变量,则把python的路径也写进去如D:\Pr...
2018-09-06 18:08:52 2277
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人