今盒子里有n个小球,A、B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断。
我们约定:
每个人从盒子中取出的球的数目必须是:1,3,7或者8个。
轮到某一方取球时不能弃权!
A先取球,然后双方交替取球,直到取完。
被迫拿到最后一个球的一方为负方(输方)
请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?
程序运行时,从标准输入获得数据,其格式如下:
先是一个整数n(n<100),表示接下来有n个整数。然后是n个整数,每个占一行(整数<10000),表示初始球数
程序则输出n行,表示A的输赢情况(输为0,赢为1)。
例如,用户输入:
4
1
2
10
18
则程序应该输出:
0
1
1
0
/*
取球数必须是 1,3,7,8
列举下列情况:(条件是两个人都很聪明,不会出错。)
n 1 2 3 4 5 6 7 8 9 10 11 12 13
w 0 1 0 1 0 1 0 1 1 1 1 1 1
可以分析得距离必输情况为1,3,7,8的情况必赢。
即在数组a[]中距离a[i](a[i]=0)的距离是1、3、7、8的会赢
*/
#include<stdio.h>
#include<stdlib.h>
int a[10005],*b;
int main()
{
int i,j,n;
for(i=1;i<=10000;i++)
if(!a[i])
a[i+1]=a[i+3]=a[i+7]=a[i+8]=1;//距离a[i](a[i]=0)的距离是1、3、7、8的会赢
scanf("%d",&n);
b=(int*)malloc(sizeof(int)*n); //开辟动态内存区
for(i=0;i<n;i++)
scanf("%d",b+i);
for(i=0;i<n;i++)
printf("%d\n",a[b[i]]);
return 0;
}