282. Expression Add Operators
Given a string that contains only digits 0-9 and a target value, return all possibilities to add binary operators (not unary) +, -, or * between the digits so they evaluate to the target value.
Examples:
"123", 6 -> ["1+2+3", "1*2*3"]
"232", 8 -> ["2*3+2", "2+3*2"]
"105", 5 -> ["1*0+5","10-5"]
"00", 0 -> ["0+0", "0-0", "0*0"]
"3456237490", 9191 -> []
分析
题目要求在一个由数字组成的字符串中插入二元操作符+,-,*
使得其计算结果等于某个特定的值。
思路来源于这里
因为要输出所有可能的情况,必定是用深度优先搜索。问题在于如何将问题拆分成多次搜索。加减法很好处理,每当我们截出一段数字时,将之前计算的结果加上或者减去这个数,就可以将剩余的数字字符串和新的计算结果代入下一次搜索中了,直到我们的计算结果和目标一样,就完成了一次搜索。然而,乘法如何处理呢?这里我们需要用一个变量记录乘法当前累乘的值,直到累乘完了,遇到下一个加号或减号再将其算入计算结果中。这里有两种情况:
乘号之前是加号或减号,例如2+3*4,我们在2那里算出来的结果,到3的时候会加上3,计算结果变为5。在到4的时候,因为4之前我们选择的是乘号,这里3就应该和4相乘,而不是和2相加,所以在计算结果时,要将5先减去刚才加的3得到2,然后再加上3乘以4,得到2+12=14,这样14就是到4为止时的计算结果。
另外一种情况是乘号之前也是乘号,如果2+3*4*5,这里我们到4为止计算的结果是14了,然后我们到5的时候又是乘号,这时候我们要把刚才加的3*4给去掉,然后再加上3*4*5,也就是14-3*4+3*4*5=62。这样5的计算结果就是62。
因为要解决上述几种情况,我们需要这么几个变量,一个是记录上次的计算结果currentResult,一个是记录上次被加或者被减的数previousNumber,一个是当前准备处理的数currentNum。当下一轮搜索是加减法时,previousNumber就是简单换成currentNum,当下一轮搜索是乘法时,previousNumber是previousNumber乘以currentNum。
- 第一次搜索不添加运算符,只添加数字,就不会出现+1+2这种表达式了。
- 我们截出的数字不能包含0001这种前面有0的数字,但是一个0是可以的。这里一旦截出的数字前导为0,就可以return了,因为说明前面就截的不对,从这之后都是开始为0的,后面也不可能了。
源码
class Solution {
public:
vector<string> addOperators(string num, int target) {
allFoundExpressions = vector<string>();
recursiveAdd(num,target,"",0,0);
return allFoundExpressions;
}
vector<string> allFoundExpressions;
void recursiveAdd(string num, int target, string expression, long currentResult, long previousNumber) {
// 如果计算结果等于目标值,且所有数都用完了,则是有效结果
if(currentResult == target && num.size() == 0) {
allFoundExpressions.push_back(expression);
return;
}
// 搜索所有可能的拆分情况
for(int i = 1; i <= num.size(); ++i) {
string currentStr = num.substr(0,i);
// 对于前导为0的数予以排除
if(currentStr.size() > 1 && currentStr[0] == '0') return;// 这里是return不是continue
// 去掉当前的数,得到下一轮搜索用的字符串
string nextStr = num.substr(i);
long currentNum = stol(currentStr);// 得到当前截出的数
// 如果不是第一个字母时,可以加运算符,否则只加数字
if(expression.size() > 0) {
recursiveAdd(nextStr,target,expression + "*" + currentStr,currentResult - previousNumber + previousNumber * currentNum,previousNumber * currentNum);
recursiveAdd(nextStr,target,expression + "+" + currentStr,currentResult + currentNum, currentNum);
recursiveAdd(nextStr,target,expression + "-" + currentStr,currentResult - currentNum, -currentNum);
} else {
recursiveAdd(nextStr,target,currentStr,currentNum,currentNum);
}
}
}
};