cf1422F. Boring Queries

这篇博客详细介绍了如何利用线段树和分块技术优化计算不超过2e5的质因数分解,并快速求解最大公约数(GCD)和最小公倍数(LCM)。通过质因数分解和动态维护最大指数,实现了O(86nlogn+n√n)的时间复杂度。同时,文章提供了完整的C++代码实现,包括线段树和分块处理的细节,适合对算法和数据结构感兴趣的读者深入学习。
题目描述
题解

lcm \text{lcm} lcm 可以看成质因数指数 max ⁡ \max max 的乘积。

不超过 2 e 5 \sqrt{2e5} 2e5 的质因数最多出现一次,剩下的质因数一共 86 86 86 个,可以用线段树或 st \text{st} st 表维护 max \text{max} max

大于 2 e 5 \sqrt{2e5} 2e5 的质因数用分块处理答案就好了,具体就是维护块之间的答案和每个数和它相同的数的前驱后继即可。

效率: O ( 86 n l o g n + n n ) O(86nlogn+n\sqrt{n}) O(86nlogn+nn )

代码
#include <bits/stdc++.h>
using namespace std;
const int N=2e5+5,P=1e9+7;
int n,q,p[N],t,m,a[N],pre[N],nex[N],pos[N],b[N],lb[505],rb[N],Z,h[505][505];
struct O{
	int f[N<<2],w[40];
	void init(int x){
		w[0]=1;
		for (int i=1;i<40;i++)
			w[i]=1ll*x*w[i-1]%P;
	}
#define Ls k<<1
#define Rs k<<1|1
#define mid ((l+r)>>1)
	void upd(int k,int l,int r,int u,int v){
		if (l==r){f[k]=v;return;}
		if (mid>=u) upd(Ls,l,mid,u,v);
		else upd(Rs,mid+1,r,u,v);
		f[k]=max(f[Ls],f[Rs]);
	}
	int qry(int k,int l,int r,int L,int R){
		if (L<=l && r<=R) return f[k];
		if (mid>=R) return qry(Ls,l,mid,L,R);
		if (mid<L) return qry(Rs,mid+1,r,L,R);
		return max(qry(Ls,l,mid,L,R),qry(Rs,mid+1,r,L,R));
	}
}g[87];
bool vis[N];
int main(){
	m=sqrt(2e5);
	for (int i=2;i<=m;i++){
		if (!vis[i]) p[++t]=i,g[t].init(i);
		for (int v,j=1;j<=t;j++){
			v=p[j]*i;if (v>m) break;
			vis[v]=1;if (i%p[j]==0) break;
		}
	}
	scanf("%d",&n);
	for (int i=1;i<=n;i++){
		scanf("%d",&a[i]);
		for (int v,j=1;j<=t;j++){
			v=0;
			while(a[i]%p[j]==0) a[i]/=p[j],v++;
			if (v) g[j].upd(1,1,n,i,v);
		}
		pre[i]=pos[a[i]];pos[a[i]]=i;
	}
	for (int i=1;i<N;i++) pos[i]=n+1;
	for (int i=n;i;i--)
		nex[i]=pos[a[i]],pos[a[i]]=i;
	m=sqrt(n);
	for (int i=1;i<=n;i++){
		b[i]=(i-1)/m+1;
		if (b[i]!=b[i-1])
			rb[b[i-1]]=i-1,lb[b[i]]=i;
	}
	rb[Z=b[n]]=n;
	for (int i=1;i<=Z;i++){
		h[i][i-1]=1;
		for (int j=i;j<=Z;j++){
			h[i][j]=h[i][j-1];
			for (int k=lb[j];k<=rb[j];k++)
				if (pre[k]<lb[i])
					h[i][j]=1ll*h[i][j]*a[k]%P;
		}
	}
	scanf("%d",&q);
	for (int l,r,lst=0;q--;){
		scanf("%d%d",&l,&r);
		l=(l+lst)%n+1;r=(r+lst)%n+1;
		if (l>r) swap(l,r);lst=1;
		for (int i=1;i<=t;i++)
			lst=1ll*lst*g[i].w[g[i].qry(1,1,n,l,r)]%P;
		if (b[l]>=b[r]-1){
			for (int i=l;i<=r;i++)
				if (pre[i]<l) lst=1ll*lst*a[i]%P;
		}
		else{
			lst=1ll*lst*h[b[l]+1][b[r]-1]%P;
			for (int i=l;i<=rb[b[l]];i++)
				if (nex[i]>=lb[b[r]]) lst=1ll*lst*a[i]%P;
			for (int i=lb[b[r]];i<=r;i++)
				if (pre[i]<l) lst=1ll*lst*a[i]%P;
		}
		printf("%d\n",lst);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值