P1514 引水入城(dfs+区间覆盖问题)

题目传送门

题意: 给你一张地图(最大规模500*500),每个点有一个高度,可以从第一行任意位置出发,可以向四周走到一个低于自己的位置,现在问你最后一行的所有点能不能都被走到,如果不能,输出有几个点不能被走到,如果能,输出最少从几个点出发就能走完。

思路: 真是一个好题 我们首先可以从第一排每个点出发,去dfs,看他能走到哪些点,不过要注意走过的点就不用再走了,因为这个数据规模会TLE 最后遍历最后一行,看看是否有走不到的,计数输出就行。

如果都能走到,那么怎么算至少从几个点出发呢?首先我们可以在之前的dfs的时候维护,每个点可以走到的最后一行的最左端和最右端。
先说结论:如果都能走到,那么每个出发点能到达的点一定是一个连续区间。
假设不连续,那么至少有两条路径交叉,也就是这两条路径会有一个公共点,那既然这个公共点一定两边都可以走到。

也就是图中黑色圈起来的地方,这个交叉点肯定两边都可以走,那么红色的就连起来了。

要注意,这种证明要在保证所有点都能到达的情况,因为如果不保证所有点能到达的情况还是有不连续的情况。

最后就转化成了一个区间覆盖问题。

#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ls p<<1
#define rs p<<1|1
#define fi first
#define se second
#define mp make_pair
#define pb push_back
//#define ll long long
#define int long long
#define pii pair<int,int>
#define ull unsigned long long
#define all(x) x.begin(),x.end()
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
char *fs,*ft,buf[1<<20];
#define gc() (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<20,stdin),fs==ft))?0:*fs++;
inline int read(){int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f;}
using namespace std;
const int N=2e5+5;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
const double eps=1e-7;
const double PI=acos(-1);
int a[505][505],l[505][505],r[505][505],n,m;
int c[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
bool vis[505][505];
void dfs(int x,int y)
{
    vis[x][y]=true;
    for(int i=0;i<4;i++)
    {
        int xx=x+c[i][0];
        int yy=y+c[i][1];
        if(xx<1||yy<1||xx>n||yy>m||a[xx][yy]>=a[x][y])
            continue;
        if(!vis[xx][yy])
            dfs(xx,yy);
        l[x][y]=min(l[x][y],l[xx][yy]);
        r[x][y]=max(r[x][y],r[xx][yy]);
    }
}
signed main()
{
    n=read();m=read();
    memset(l,0x3f,sizeof l);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            a[i][j]=read();
    for(int i=1;i<=m;i++)
        l[n][i]=r[n][i]=i;
    for(int i=1;i<=m;i++)
        if(!vis[1][i])
            dfs(1,i);
    int cnt=0;
    for(int i=1;i<=m;i++)
    {
        if(!vis[n][i])
            cnt++;
    }
    if(cnt)
        cout<<0<<endl<<cnt<<endl;;
    else
    {
        int left=1,res=0;
        while(left<=m)
        {
            int right=0;
            for(int i=1;i<=m;i++)
            {
                if(l[1][i]<=left)
                    right=max(right,r[1][i]);
            }
            left=right+1;
            res++;
        }
        cout<<1<<endl<<res<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值