题目传送门
题意: n只青蛙,m个石头,青蛙从1 ~ n 编号,石头从0 ~ m-1 编号,石头围成一个圆圈,每只青蛙可以跳a[i]步,即当这只青蛙在编号j的石头上时,它可以跳到 (j+a[i])%m的石头上,问你有哪些石头被青蛙踩过,只需要输出石头编号之和。
思路: 显然,距离为a[i]的青蛙可以走到的石头是小于m的g=gcd(a[i],m)倍数(不包括m,因为没有编号为m的石头 ),那我们对于g,它产生的贡献是(g+m-g)*(m/g-1)/2,那么问题来了,被重复计算的怎么减掉呢?我们可以先对m进行分解因子,然后对于每个g,枚举m的因子,如果有因子是它的倍数,那么这个因子应该被计算,把cnt[j]置为1,cnt表示这个因子应该被计算多少次,最后再枚举因子,计算贡献,计算了这个数字的因子,就把这个因子的倍数的need修改,need表示这个因子被计算了多少次。
#include<bits/stdc++.h>
#pragma GCC optimize("Ofast")
#define endl '\n'
#define null NULL
#define ls p<<1
#define rs p<<1|1
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define ll long long
#define int long long
#define pii pair<int,int>
#define ull unsigned long long
#define all(x) x.begin(),x.end()
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
char *fs,*ft,buf[1<<20];
#define gc() (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<20,stdin),fs==ft))?0:*fs++;
inline int read(){int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f;}
using namespace std;
const int N=1e5+5;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
const double eps=1e-7;
const double PI=acos(-1);
int a[N],cnt[N],need[N];
signed main()
{
int t;
cin>>t;
for(int Case=1;Case<=t;Case++)
{
int n,m;
cin>>n>>m;
vector<int>v;
memset(cnt,0,sizeof cnt);
memset(need,0,sizeof need);
for(int i=1;i*i<=m;i++)
{
if(m%i==0)
{
v.pb(i);
if(i*i!=m&&i!=1)
v.pb(m/i);
}
}
sort(all(v));
for(int i=1;i<=n;i++)
{
cin>>a[i];
int g=__gcd(a[i],m);
for(int j=0;j<v.size();j++)
if(v[j]%g==0)
cnt[j]=1;
}
int res=0;
for(int i=0;i<v.size();i++)
{
res+=m*(m/v[i]-1)/2*(cnt[i]-need[i]);
for(int j=i+1;j<v.size();j++)
if(v[j]%v[i]==0)
need[j]+=cnt[i]-need[i];
}
printf("Case #%lld: %lld\n",Case,res);
}
}