排序算法

1.冒泡排序

  • 两层循环,i < arr.length,j < arr.length - i - 1
  • 内层循环一次获取最大值,放置末尾
  • 在之前的数组中继续重复查找最大值
    // 冒泡排序,参数:初始数组
    private static void bubbleSort(int[] arr) {
        //外层循环,遍历次数
        for (int i = 0; i < arr.length; i++) {
            //内层循环一次,获取一个最大值,放置末尾
            // 如果前一个值比后一个值大,则交换
            for (int j = 0; j < arr.length - i - 1; j++) {
                if (arr[j] > arr[j + 1]) {
                    int temp = arr[j + 1];
                    arr[j + 1] = arr[j];
                    arr[j] = temp;
                }
            }
        }
    }

2.选择排序

  • 两层循环,假设第一个数为最小值
  • 循环判断,若不是最小值进行交换
  • 在后面的数组中继续寻找最小值
    // 选择排序,参数:初始数组
    private static void selectSort(int[] arr) {
        for (int i = 0; i < arr.length; i++) {
            //默认第一个是最小的。
            int min = arr[i];
            //记录最小的下标
            int index = i;
            //通过与后面的数据进行比较得出,最小值和下标
            for (int j = i + 1; j < arr.length; j++) {
                if (min > arr[j]) {
                    min = arr[j];
                    index = j;
                }
            }
            //将最小值与本次循环的,开始值交换
            int temp = arr[i];
            arr[i] = min;
            arr[index] = temp;
        }
    }

3.插入排序

  • 两层循环,前面有序
  • 若小于前面有序数组的值则插入
	// 插入排序,参数:初始数组
    private static void insertSort(int[] arr) {
        for (int i = 1; i < arr.length; i++) {
            //外层循环,从第二个开始比较
            for (int j = i; j > 0; j--) {
                //内存循环,与前面排好序的数据比较,如果后面的数据小于前面的则交换
                if (arr[j] < arr[j - 1]) {
                    int temp = arr[j - 1];
                    arr[j - 1] = arr[j];
                    arr[j] = temp;
                } else {
                    //如果不小于,说明插入完毕,退出内层循环
                    break;
                }
            }
        }

4.希尔排序

  • 将原始数组进行分组,每隔长度的一半
  • 间隔每次缩小一半,并对同一组进行排序
  	// 希尔排序,参数:初始数组
    private static void shellSort(int[] arr) {
        //step:步长
        for (int step = arr.length / 2; step > 0; step /= 2) {
            //对一个步长区间进行比较 [step,arr.length)
            for (int i = step; i < arr.length; i++) {
                int value = arr[i];
                int j;
                //对步长区间中具体的元素进行比较
                for (j = i - step; j >= 0 && arr[j] > value; j -= step) {
                    //j为左区间的取值,j+step为右区间与左区间的对应值。
                    arr[j + step] = arr[j];
                }
                //此时step为一个负数,[j + step]为左区间上的初始交换值
                arr[j + step] = value;
            }
        }
    }

5.快速排序

  • 选取第一个数为参照,讲数组分为两部分
  • 参照数左边都比参照数小,参照数右边都比参照数大
  • 对于两部分分别递归
    // 快速排序,参数:初始数组,开始位置,结束位置
    private static void quickSort(int[] arr, int leftIndex, int rightIndex) {
        if (leftIndex >= rightIndex) {
            return;
        }
        int left = leftIndex;
        int right = rightIndex;
        //待排序的第一个元素作为基准值
        int key = arr[left];
        //从左右两边交替扫描,直到left = right
        while (left < right) {
            while (right > left && arr[right] >= key) {
                //从右往左扫描,找到第一个比基准值小的元素
                right--;
            }
            //找到这种元素将arr[right]放入arr[left]中
            arr[left] = arr[right];
            while (left < right && arr[left] <= key) {
                //从左往右扫描,找到第一个比基准值大的元素
                left++;
            }
            //找到这种元素将arr[left]放入arr[right]中
            arr[right] = arr[left];
        }
        //基准值归位
        arr[left] = key;
        //对基准值左边的元素进行递归排序
        quickSort(arr, leftIndex, left - 1);
        //对基准值右边的元素进行递归排序。
        quickSort(arr, right + 1, rightIndex);
    }

6.归并排序

  • 分治
    // 归并排序,参数:初始数组
    public static int[] mergeSort(int[] array) {
        if (array.length < 2) return array;
        int mid = array.length / 2;
        int[] left = Arrays.copyOfRange(array, 0, mid);
        int[] right = Arrays.copyOfRange(array, mid, array.length);
        return merge(mergeSort(left), mergeSort(right));
    }

    // 合并数组
    public static int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        for (int index = 0, i = 0, j = 0; index < result.length; index++) {
            if (i >= left.length)
                result[index] = right[j++];
            else if (j >= right.length)
                result[index] = left[i++];
            else if (left[i] > right[j])
                result[index] = right[j++];
            else
                result[index] = left[i++];
        }
        return result;
    }

7.堆排序

  • 先构造大顶堆,然后交换首尾元素
    // 堆排序,参数:初始数组
    private static void heapSort(int[] arr) {
        if (arr == null || arr.length == 0) {
            return;
        }
        int len = arr.length;
        // 构建大顶堆,这里其实就是把待排序序列,变成一个大顶堆结构的数组
        buildMaxHeap(arr, len);

        // 交换堆顶和当前末尾的节点,重置大顶堆
        for (int i = len - 1; i > 0; i--) {
            swap(arr, 0, i);
            len--;
            heapify(arr, 0, len);
        }
    }

    private static void buildMaxHeap(int[] arr, int len) {
        // 从最后一个非叶节点开始向前遍历,调整节点性质,使之成为大顶堆
        for (int i = (len / 2) - 1; i >= 0; i--) {
            heapify(arr, i, len);
        }
    }

    private static void heapify(int[] arr, int i, int len) {
        // 先根据堆性质,找出它左右节点的索引
        int left = 2 * i + 1;
        int right = 2 * i + 2;
        // 默认当前节点(父节点)是最大值。
        int largestIndex = i;
        if (left < len && arr[left] > arr[largestIndex]) {
            // 如果有左节点,并且左节点的值更大,更新最大值的索引
            largestIndex = left;
        }
        if (right < len && arr[right] > arr[largestIndex]) {
            // 如果有右节点,并且右节点的值更大,更新最大值的索引
            largestIndex = right;
        }

        if (largestIndex != i) {
            // 如果最大值不是当前非叶子节点的值,那么就把当前节点和最大值的子节点值互换
            swap(arr, i, largestIndex);
            // 因为互换之后,子节点的值变了,如果该子节点也有自己的子节点,仍需要再次调整。
            heapify(arr, largestIndex, len);
        }
    }

    private static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

8.计数排序

  • 确定最大值和最小值
  • 确定之间每个数出现的次数
    // 计数排序,参数:初始数组
    private static void countSort(int[] array) {
        int bias, min = array[0], max = array[0];
        for (int i = 1; i < array.length; i++) {
            if (array[i] > max)
                max = array[i];
            if (array[i] < min)
                min = array[i];
        }
        bias = 0 - min;
        int[] bucket = new int[max - min + 1];
        Arrays.fill(bucket, 0);
        for (int i = 0; i < array.length; i++) {
            bucket[array[i] + bias]++;
        }
        int index = 0, i = 0;
        while (index < array.length) {
            if (bucket[i] != 0) {
                array[index] = i - bias;
                bucket[i]--;
                index++;
            } else
                i++;
        }
    }

9.桶排序

  • 计数排序升级版,存储一定范围数据
    // 桶排序,参数:原始数组
    public static void bucketSort(int[] arr) {
        // 计算最大值与最小值
        int max = Integer.MIN_VALUE;
        int min = Integer.MAX_VALUE;
        for (int i = 0; i < arr.length; i++) {
            max = Math.max(max, arr[i]);
            min = Math.min(min, arr[i]);
        }

        // 计算桶的数量
        int bucketNum = (max - min) / arr.length + 1;
        ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketNum);
        for (int i = 0; i < bucketNum; i++) {
            bucketArr.add(new ArrayList<Integer>());
        }

        // 将每个元素放入桶
        for (int i = 0; i < arr.length; i++) {
            int num = (arr[i] - min) / (arr.length);
            bucketArr.get(num).add(arr[i]);
        }

        // 对每个桶进行排序
        for (int i = 0; i < bucketArr.size(); i++) {
            Collections.sort(bucketArr.get(i));
        }

        // 将桶中的元素赋值到原序列
        int index = 0;
        for (int i = 0; i < bucketArr.size(); i++) {
            for (int j = 0; j < bucketArr.get(i).size(); j++) {
                arr[index++] = bucketArr.get(i).get(j);
            }
        }
    }

10.基数排序

  • 按照个位、十位、百位。。。依次排序
    // 基数排序,参数:初始数组
    public static void radixSort(int[] array) {
        // 1.先算出最大数的位数;
        int max = array[0];
        for (int i = 1; i < array.length; i++) {
            max = Math.max(max, array[i]);
        }
        int maxDigit = 0;
        while (max != 0) {
            max /= 10;
            maxDigit++;
        }
        int mod = 10, div = 1;
        ArrayList<ArrayList<Integer>> bucketList = new ArrayList<>();
        for (int i = 0; i < 10; i++)
            bucketList.add(new ArrayList<Integer>());
        for (int i = 0; i < maxDigit; i++, mod *= 10, div *= 10) {
            for (int j = 0; j < array.length; j++) {
                int num = (array[j] % mod) / div;
                bucketList.get(num).add(array[j]);
            }
            int index = 0;
            for (int j = 0; j < bucketList.size(); j++) {
                for (int k = 0; k < bucketList.get(j).size(); k++) {
                    array[index++] = bucketList.get(j).get(k);
                }
                bucketList.get(j).clear();
            }
        }
    }

Reference
https://www.cnblogs.com/luomeng/p/10587492.html
https://www.cnblogs.com/ll409546297/p/10956960.html
https://www.cnblogs.com/xikui/p/11196148.html
https://blog.csdn.net/weixin_41190227/article/details/86600821
https://blog.csdn.net/qq_28063811/article/details/93034625

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值