1.冒泡排序
- 两层循环,i < arr.length,j < arr.length - i - 1
- 内层循环一次获取最大值,放置末尾
- 在之前的数组中继续重复查找最大值
// 冒泡排序,参数:初始数组
private static void bubbleSort(int[] arr) {
//外层循环,遍历次数
for (int i = 0; i < arr.length; i++) {
//内层循环一次,获取一个最大值,放置末尾
// 如果前一个值比后一个值大,则交换
for (int j = 0; j < arr.length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j + 1];
arr[j + 1] = arr[j];
arr[j] = temp;
}
}
}
}
2.选择排序
- 两层循环,假设第一个数为最小值
- 循环判断,若不是最小值进行交换
- 在后面的数组中继续寻找最小值
// 选择排序,参数:初始数组
private static void selectSort(int[] arr) {
for (int i = 0; i < arr.length; i++) {
//默认第一个是最小的。
int min = arr[i];
//记录最小的下标
int index = i;
//通过与后面的数据进行比较得出,最小值和下标
for (int j = i + 1; j < arr.length; j++) {
if (min > arr[j]) {
min = arr[j];
index = j;
}
}
//将最小值与本次循环的,开始值交换
int temp = arr[i];
arr[i] = min;
arr[index] = temp;
}
}
3.插入排序
- 两层循环,前面有序
- 若小于前面有序数组的值则插入
// 插入排序,参数:初始数组
private static void insertSort(int[] arr) {
for (int i = 1; i < arr.length; i++) {
//外层循环,从第二个开始比较
for (int j = i; j > 0; j--) {
//内存循环,与前面排好序的数据比较,如果后面的数据小于前面的则交换
if (arr[j] < arr[j - 1]) {
int temp = arr[j - 1];
arr[j - 1] = arr[j];
arr[j] = temp;
} else {
//如果不小于,说明插入完毕,退出内层循环
break;
}
}
}
4.希尔排序
- 将原始数组进行分组,每隔长度的一半
- 间隔每次缩小一半,并对同一组进行排序
// 希尔排序,参数:初始数组
private static void shellSort(int[] arr) {
//step:步长
for (int step = arr.length / 2; step > 0; step /= 2) {
//对一个步长区间进行比较 [step,arr.length)
for (int i = step; i < arr.length; i++) {
int value = arr[i];
int j;
//对步长区间中具体的元素进行比较
for (j = i - step; j >= 0 && arr[j] > value; j -= step) {
//j为左区间的取值,j+step为右区间与左区间的对应值。
arr[j + step] = arr[j];
}
//此时step为一个负数,[j + step]为左区间上的初始交换值
arr[j + step] = value;
}
}
}
5.快速排序
- 选取第一个数为参照,讲数组分为两部分
- 参照数左边都比参照数小,参照数右边都比参照数大
- 对于两部分分别递归
// 快速排序,参数:初始数组,开始位置,结束位置
private static void quickSort(int[] arr, int leftIndex, int rightIndex) {
if (leftIndex >= rightIndex) {
return;
}
int left = leftIndex;
int right = rightIndex;
//待排序的第一个元素作为基准值
int key = arr[left];
//从左右两边交替扫描,直到left = right
while (left < right) {
while (right > left && arr[right] >= key) {
//从右往左扫描,找到第一个比基准值小的元素
right--;
}
//找到这种元素将arr[right]放入arr[left]中
arr[left] = arr[right];
while (left < right && arr[left] <= key) {
//从左往右扫描,找到第一个比基准值大的元素
left++;
}
//找到这种元素将arr[left]放入arr[right]中
arr[right] = arr[left];
}
//基准值归位
arr[left] = key;
//对基准值左边的元素进行递归排序
quickSort(arr, leftIndex, left - 1);
//对基准值右边的元素进行递归排序。
quickSort(arr, right + 1, rightIndex);
}
6.归并排序
- 分治
// 归并排序,参数:初始数组
public static int[] mergeSort(int[] array) {
if (array.length < 2) return array;
int mid = array.length / 2;
int[] left = Arrays.copyOfRange(array, 0, mid);
int[] right = Arrays.copyOfRange(array, mid, array.length);
return merge(mergeSort(left), mergeSort(right));
}
// 合并数组
public static int[] merge(int[] left, int[] right) {
int[] result = new int[left.length + right.length];
for (int index = 0, i = 0, j = 0; index < result.length; index++) {
if (i >= left.length)
result[index] = right[j++];
else if (j >= right.length)
result[index] = left[i++];
else if (left[i] > right[j])
result[index] = right[j++];
else
result[index] = left[i++];
}
return result;
}
7.堆排序
- 先构造大顶堆,然后交换首尾元素
// 堆排序,参数:初始数组
private static void heapSort(int[] arr) {
if (arr == null || arr.length == 0) {
return;
}
int len = arr.length;
// 构建大顶堆,这里其实就是把待排序序列,变成一个大顶堆结构的数组
buildMaxHeap(arr, len);
// 交换堆顶和当前末尾的节点,重置大顶堆
for (int i = len - 1; i > 0; i--) {
swap(arr, 0, i);
len--;
heapify(arr, 0, len);
}
}
private static void buildMaxHeap(int[] arr, int len) {
// 从最后一个非叶节点开始向前遍历,调整节点性质,使之成为大顶堆
for (int i = (len / 2) - 1; i >= 0; i--) {
heapify(arr, i, len);
}
}
private static void heapify(int[] arr, int i, int len) {
// 先根据堆性质,找出它左右节点的索引
int left = 2 * i + 1;
int right = 2 * i + 2;
// 默认当前节点(父节点)是最大值。
int largestIndex = i;
if (left < len && arr[left] > arr[largestIndex]) {
// 如果有左节点,并且左节点的值更大,更新最大值的索引
largestIndex = left;
}
if (right < len && arr[right] > arr[largestIndex]) {
// 如果有右节点,并且右节点的值更大,更新最大值的索引
largestIndex = right;
}
if (largestIndex != i) {
// 如果最大值不是当前非叶子节点的值,那么就把当前节点和最大值的子节点值互换
swap(arr, i, largestIndex);
// 因为互换之后,子节点的值变了,如果该子节点也有自己的子节点,仍需要再次调整。
heapify(arr, largestIndex, len);
}
}
private static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
8.计数排序
- 确定最大值和最小值
- 确定之间每个数出现的次数
// 计数排序,参数:初始数组
private static void countSort(int[] array) {
int bias, min = array[0], max = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] > max)
max = array[i];
if (array[i] < min)
min = array[i];
}
bias = 0 - min;
int[] bucket = new int[max - min + 1];
Arrays.fill(bucket, 0);
for (int i = 0; i < array.length; i++) {
bucket[array[i] + bias]++;
}
int index = 0, i = 0;
while (index < array.length) {
if (bucket[i] != 0) {
array[index] = i - bias;
bucket[i]--;
index++;
} else
i++;
}
}
9.桶排序
- 计数排序升级版,存储一定范围数据
// 桶排序,参数:原始数组
public static void bucketSort(int[] arr) {
// 计算最大值与最小值
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for (int i = 0; i < arr.length; i++) {
max = Math.max(max, arr[i]);
min = Math.min(min, arr[i]);
}
// 计算桶的数量
int bucketNum = (max - min) / arr.length + 1;
ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketNum);
for (int i = 0; i < bucketNum; i++) {
bucketArr.add(new ArrayList<Integer>());
}
// 将每个元素放入桶
for (int i = 0; i < arr.length; i++) {
int num = (arr[i] - min) / (arr.length);
bucketArr.get(num).add(arr[i]);
}
// 对每个桶进行排序
for (int i = 0; i < bucketArr.size(); i++) {
Collections.sort(bucketArr.get(i));
}
// 将桶中的元素赋值到原序列
int index = 0;
for (int i = 0; i < bucketArr.size(); i++) {
for (int j = 0; j < bucketArr.get(i).size(); j++) {
arr[index++] = bucketArr.get(i).get(j);
}
}
}
10.基数排序
- 按照个位、十位、百位。。。依次排序
// 基数排序,参数:初始数组
public static void radixSort(int[] array) {
// 1.先算出最大数的位数;
int max = array[0];
for (int i = 1; i < array.length; i++) {
max = Math.max(max, array[i]);
}
int maxDigit = 0;
while (max != 0) {
max /= 10;
maxDigit++;
}
int mod = 10, div = 1;
ArrayList<ArrayList<Integer>> bucketList = new ArrayList<>();
for (int i = 0; i < 10; i++)
bucketList.add(new ArrayList<Integer>());
for (int i = 0; i < maxDigit; i++, mod *= 10, div *= 10) {
for (int j = 0; j < array.length; j++) {
int num = (array[j] % mod) / div;
bucketList.get(num).add(array[j]);
}
int index = 0;
for (int j = 0; j < bucketList.size(); j++) {
for (int k = 0; k < bucketList.get(j).size(); k++) {
array[index++] = bucketList.get(j).get(k);
}
bucketList.get(j).clear();
}
}
}
Reference
https://www.cnblogs.com/luomeng/p/10587492.html
https://www.cnblogs.com/ll409546297/p/10956960.html
https://www.cnblogs.com/xikui/p/11196148.html
https://blog.csdn.net/weixin_41190227/article/details/86600821
https://blog.csdn.net/qq_28063811/article/details/93034625