石子合并

石子合并(NOI1995)

题目描述
在操场上沿一直线排列着 n堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分。允许在第一次合并前对调一次相邻两堆石子的次序。
计算在上述条件下将n堆石子合并成一堆的最小得分和初次交换的位置。

输入
输入数据共有二行,其中,第1行是石子堆数n≤100;
第2行是顺序排列的各堆石子数(≤20),每两个数之间用空格分隔。

输出
输出合并的最小得分。

样例输入
3
2 5 1
样例输出
11

平行四边形优化

m(i,j)=min{ m(i,k-1)+m(k,j)+w(i,j)}i< k<=j

假如对于i<=i’< j<=j’,有w(i’,j)<=w(i,j’),那么我们称函数 w 满足关于区间包含的单调性。

另外,假如有:w(i,j)+w(i’,j’)<=w(i’,j)+w(i,j’)那么我们称函数 w 满足四边形不等式。

则可推得m(i,j)也满足四边形不等式,那么s(i,j)单调

{s[i][j]为(i,j)的最优断点,s[i][i]=i}

此时m(i,j)=min{ m(i,k-1)+m(k,j)+w(i,j)}s[i][j-1]<= k<=s[i+1][j]

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int a[200],s[200],f[200][200],b[200][200];
int main(){
  int n;
  scanf("%d",&n);
  for (int i=1;i<=n;++i) scanf("%d",&a[i]);
  int ans=1<<29;
  for (int cas=1;cas<n;++cas){
    swap(a[cas],a[cas+1]);
    s[0]=0;
    for (int i=1;i<=n;++i){s[i]=s[i-1]+a[i];b[i][i]=i;}
    for (int i=1;i<=n;++i)
      for (int j=1;j<=n;++j) f[i][j]=1<<29;
    for (int i=1;i<=n;++i) f[i][i]=0,f[i+1][i]=0;
    for (int l=1;l<=n;++l)
      for (int i=1;i<=n;++i){
        int j=i+l;
        for (int k=b[i][j-1];k<=b[i+1][j];++k)
        if (f[i][k]+f[k+1][j]+s[j]-s[i-1]<f[i][j]){
          f[i][j]=f[i][k]+f[k+1][j]+s[j]-s[i-1];
          b[i][j]=k;
        }
      }
    ans=min(ans,f[1][n]);
    swap(a[cas],a[cas+1]);
  }
  printf("%d",ans);
  return 0;
}
做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中: (1)第一个模型:一行排列且相邻合并 有n堆石子形成一行(a1,a2,…,an,ai为第i堆石子个数),相邻两堆合并合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 (2)第二个模型:一圈排列且相邻合并 有n堆石子形成首位相连的一个环形(a1,a2,…,an,ai为第i堆石子个数,an和a1相邻),相邻两堆合并合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 例如4堆石子,每堆石子个数:9 4 4 5 若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。 若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。 此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,最后获得的也就是最低得分。但这个贪心策略是不对的。 如下反例: 石子:9 4 6 1 5 贪心策略: 9 4 6 6 6 9 10 6 10 9 16 16 25 25 得分共计:6+10+16+25=57 但9 4 6 1 5 若如下方式合并: 13 6 1 5 13 13 6 6 6 13 12 12 25 25 13+6+12+25=56 或 9 4 6 6 6 9 4 12 12 13 12 13 25 25 6+12+13+25=56 后两种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻两堆合并,并不能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。 Input 两行。第一行n,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100 Output 两行。第一行是第一个模型的最低得分和最高得分,中间空格相连,第二行是第二个模型的最低得分和最高得分,中间空格相连。 Sample Input 4 9 4 4 5 Sample Output 43 52 43 54 Hint 第一个石子合并模型,和书上3.1节的矩阵连乘问题类似. 假设m[i,j]为合并石子ai…aj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。 递推公式如下,其中min表示求最小,sum表示求和. (1) m[i,j]=0, if i=j (2) m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j 至于求最大值完全同理. 至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值