卡片游戏
题目描述
小D举办了元旦联欢活动,其中有一个卡片游戏。
游戏的规则是这样的:有n张卡片,每张卡片上正面写着一个小于等于100的正整数ai,反面都是一样的花色。这n张卡片正面朝下叠成一堆,玩这个游戏的人从中可以抽出连续的k(1≤k≤n)张卡片。如果对于这k张卡片上的数字的平均值a,满足l<=a<=r,那他就可以获得小礼物一件。
小W来玩这个游戏了,她事先通过某些途径知道了这n张卡片上写的数字,现在她想知道她获得小礼物的期望值。
小W对小数很头疼,所以请你用分数的形式告诉她答案。
输入
输入文件名为game.in
输入第1行,三个整数n,l,r。
第2行,包含n个整数ai。
输出
输出文件名为game.out
输出仅1行,表示小W获得小礼物的期望值。输出格式为“P/Q”(P和Q互质)。如果期望值是0或1就不用输出分数了
样例输入
game.in
4 2 3
3 1 2 4
game.out
7/10
样例输出
【输入输出样例2】
game.in
4 1 4
3 1 2 4
game.out
1
暴力就是n2枚举区间,用前缀和sum[i]表示∑x=1ia[x]的和
求l<=sum[i]−sum[j]i−j<=r(0<=j<i<=n)的个数
然后发现l<=sum[i]−sum[j]i−j可化为
li−lj<=sum[i]−sum[j]
l[i]−sum[i]<=lj−sum[j]
设A[i]=l[i]−sum[i],求(有相等)逆序对
同理求sum[i]−sum[j]i−j>r的个数
然后个数相减
此题说明要有把数学式子化下去的勇气!!!
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int a[600000],b[600000],c[600000];
#define ll long long
ll gcd(ll x,ll y){
if (x%y==0) return y;
else return gcd(y,x%y);
}
long long ans1,ans2;
void mergesort1(int l,int r){
int mid=(l+r)>>1;
if (l<mid) mergesort1(l,mid);
if (r>mid+1) mergesort1(mid+1,r);
int i=l,j=mid+1,k=l;
while (i<=mid&&j<=r){
if (a[i]>=a[j]){
c[k]=a[j];
ans1+=mid-i+1;
++j;++k;
}else{
c[k]=a[i];
++k;++i;
}
}
while (i<=mid){
c[k]=a[i];
++k;++i;
}
while (j<=r){
c[k]=a[j];
++k;++j;
}
for (int i=l;i<=r;++i) a[i]=c[i];
}
void mergesort2(int l,int r){
int mid=(l+r)>>1;
if (l<mid) mergesort2(l,mid);
if (r>mid+1) mergesort2(mid+1,r);
int i=l,j=mid+1,k=l;
while (i<=mid&&j<=r){
if (b[i]>b[j]){
c[k]=b[j];
ans2+=mid-i+1;
++j;++k;
}else{
c[k]=b[i];
++k;++i;
}
}
while (i<=mid){
c[k]=b[i];
++k;++i;
}
while (j<=r){
c[k]=b[j];
++k;++j;
}
for (int i=l;i<=r;++i) b[i]=c[i];
}
int main(){
int n,l,r;
scanf("%d%d%d",&n,&l,&r);
int sum=0;
a[0]=l*0;
b[0]=r*0;
for (int i=1;i<=n;++i){
int x;
scanf("%d",&x);
sum=sum+x;
a[i]=l*i-sum;
b[i]=r*i-sum;
}
ans1=0;
mergesort1(0,n);
ans2=0;
mergesort2(0,n);
ans1=ans1-ans2;
ans2=(long long)n*(n+1)/2;
if (ans1==0) printf("0\n");
else if (ans1==ans2) printf("1\n");
else{
long long gc=gcd(ans1,ans2);
printf("%lld/%lld\n",ans1/gc,ans2/gc);
}
return 0;
}