1096: [ZJOI2007]仓库建设
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4813 Solved: 2134
[ Submit][ Status][ Discuss]
Description
L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。由于这座山处于高原内
陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象
部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于
地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库
的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设
置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,
假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到
以下数据:1:工厂i距离工厂1的距离Xi(其中X1=0);2:工厂i目前已有成品数量Pi;:3:在工厂i建立仓库的费用
Ci;请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。
Input
第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。
Output
仅包含一个整数,为可以找到最优方案的费用。
Sample Input
0 5 10
5 3 100
9 6 10
Sample Output
HINT
在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)*5+(9-5)*3=57,总费用67,不如前者优。
【数据规模】
对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。
Source
就是一个斜率优化。。。
方程和优化不说了,LZ太懒了。。
这里说几个小细节:
1、要先把i - 1加入队列中再来删除队首元素,再来计算f[i]
2、记得一定一定一定要考虑f[0](蒟蒻这里WA了)
3、式子一定一定一定要推对
直接上代码:
#include<cstdio>
using namespace std;
typedef long long LL;
const int maxn = 1000100;
int q[maxn];
LL f[maxn],sumxp[maxn],sump[maxn],p[maxn],c[maxn],x[maxn];
inline double K(int j,int k)
{
double ans = (double)(f[j] - f[k] + sumxp[j] - sumxp[k]) / (sump[j] - sump[k]);
return ans;
}
int main()
{
int n;
scanf("%d",&n);
for (int i = 1; i <= n; i++)
{
scanf("%lld %lld %lld",&x[i],&p[i],&c[i]);
sump[i] = sump[i - 1] + p[i];
sumxp[i] = sumxp[i - 1] + p[i] * x[i];
}
int head = 1,tail = 1;
f[1] = c[1];
for (int i = 2; i <= n; i++)
{
while (head < tail && K(q[tail - 1],q[tail]) > K(q[tail],i - 1)) tail--;
q[++tail] = i - 1;
while (head < tail && K(q[head],q[head + 1]) < (double) x[i]) head++;
int j = q[head];
f[i] = f[j] + x[i] * (sump[i - 1] - sump[j]) - (sumxp[i - 1] - sumxp[j]) + c[i];
}
printf("%lld",f[n]);
return 0;
}