Codeforces Round #429 (Div. 2) D

D. Leha and another game about graph
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Leha plays a computer game, where is on each level is given a connected graph with n vertices and m edges. Graph can contain multiple edges, but can not contain self loops. Each vertex has an integer di, which can be equal to 01 or  - 1. To pass the level, he needs to find a «good» subset of edges of the graph or say, that it doesn't exist. Subset is called «good», if by by leaving only edges from this subset in the original graph, we obtain the following: for every vertex i, di =  - 1 or it's degree modulo 2 is equal to di. Leha wants to pass the game as soon as possible and ask you to help him. In case of multiple correct answers, print any of them.

Input

The first line contains two integers nm (1 ≤ n ≤ 3·105n - 1 ≤ m ≤ 3·105) — number of vertices and edges.

The second line contains n integers d1, d2, ..., dn ( - 1 ≤ di ≤ 1) — numbers on the vertices.

Each of the next m lines contains two integers u and v (1 ≤ u, v ≤ n) — edges. It's guaranteed, that graph in the input is connected.

Output

Print  - 1 in a single line, if solution doesn't exist. Otherwise in the first line k — number of edges in a subset. In the next k lines indexes of edges. Edges are numerated in order as they are given in the input, starting from 1.

Examples
input
1 0
1
output
-1
input
4 5
0 0 0 -1
1 2
2 3
3 4
1 4
2 4
output
0
input
2 1
1 1
1 2
output
1
1
input
3 3
0 -1 1
1 2
2 3
1 3
output
1
2
Note

In the first sample we have single vertex without edges. It's degree is 0 and we can not get 1.




好神。。。。。

首先对于这题来说,最终答案里是没有环的,因为出现环的话其实对答案是没有影响的(可以画一画)

没有环的连通图,是什么呢。。?

是树!

于是我们考虑用dfs跑图构造出一个dfs树

然后对于这个树上的点u

如果存在一个儿子v,d[v] == 1,那么也就意味着d[v]必须要变成0,于是我们将u - v加入选择方案,并将d[u]取反(如果d[u] == -1则不用)

然后做完后只剩下d[root]没有确定下,

这时候我们考虑,如果d[root] == 1,那么需要将d[root]变成0,那么我们可以选一个d[u] == -1的点,将u到root的路径上的边的选择全部取反,于是d[root] 就成了0

如果不存在这样的点,显然不存在方案,答案为-1


代码:
#include<cstdio>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
#include<cstring>
using namespace std;

typedef long long LL;

const int INF = 2147483647;
const int maxn = 300100;

struct data{
	int id,to;
};

vector<data> e[maxn];
vector<int> G[maxn];
int n,m,d[maxn],faid[maxn],fa[maxn],p[maxn],tot,pos;
bool ans[maxn],vis[maxn];

inline LL getint()
{
	LL ret = 0,f = 1;
	char c = getchar();
	while (c < '0' || c > '9')
	{
		if (c == '-') f = -1;
		c = getchar();
	}
	while (c >= '0' && c <= '9')
		ret = ret * 10 + c - '0',c = getchar();
	return ret * f;
}

inline void dfs(int u)
{
	vis[u] = 1;
	for (int i = 0; i < e[u].size(); i++)
	{
		int v = e[u][i].to,id = e[u][i].id;
		if (vis[v]) continue;
		G[u].push_back(v);
		fa[v] = u;
		faid[v] = id;
		dfs(v);
	}
}

inline void dfs2(int u)
{
	for (int i = 0; i < G[u].size(); i++)
	{
		int v = G[u][i];
		dfs2(v);
		if (d[v] == 1)
		{
			if (d[u] != -1) d[u] ^= 1;
			d[v] ^= 1;
			ans[faid[v]] = 1;
		}
	}
}

int main()
{
	n = getint(); m = getint();
	for (int i = 1; i <= n; i++) 
	{
		d[i] = getint();
		if (d[i] == -1)
			pos = i;
	}
	for (int i = 1; i <= m; i++)
	{
		int u = getint(),v = getint();
		e[u].push_back((data){i,v});
		e[v].push_back((data){i,u});
	}
	dfs(1);
	dfs2(1);
	if (d[1] == 1)
	{
		if (!pos){printf("-1"); return 0;}
		int u = pos;
		while (fa[u])
		{
			ans[faid[u]] ^= 1;
			u = fa[u];
		}
	}
	for (int i = 1; i <= m; i++)
		if (ans[i]) p[++tot] = i;
	printf("%d\n",tot);
	for (int i = 1; i <= tot; i++)
		printf("%d\n",p[i]);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值