Joky_2002的博客

有时候命运只是一个爱开玩笑的小丑

【bzoj2811】[Apio2012]Guard

2811: [Apio2012]Guard

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 936  Solved: 401
[Submit][Status][Discuss]

Description

Input

Output

Sample Input

5 3 4
1 2 1
3 4 1
4 4 0
4 5 1


Sample Output

3
5

HINT

在这个样例中,有两种可能的安排方式:1,3,5 或者 2,3,5。即 3 和 5

 

后面必然躲着一个忍者。 

考虑第一个灌木丛,存在一种安排方案使得它的后面躲着忍者,但也存在一

 

种安排方案使得它后面没有躲忍者,因此不应该输出 1。同理,不应该输出 2。

Source

[Submit][Status][Discuss]

很神奇的题目。。。


采集我先想了一个类似差分约束的东西。。。然后发现并不能搞


于是看了一波题解


发现正解原来是。。。。贪心。。。


先把那些肯定没有点的区间给删掉(用一个数据结构),然后把那些包含区间的大区间删掉(因为这些区间肯定没有用)。。


然后把剩下的区间提出来排个序,可以发现左端点和右端点都是单调递增的


于是我们考虑每一个区间,显然他的右端点是最优的,也就是说,右端点是唯一有可能是必须存在的。


判断的话,我们设右端点向左一个点为点u(因为点u显然是次优的),考虑强制放这个点,如果使覆盖所有区间的最小代价变劣了,那么右端点就是必须存在的,反之就不是


实现的话,预处理出f[i]和g[i],表示从第1个到第i个区间覆盖需要多大代价,从第i个区间到第n个区间覆盖需要多大代价,然后强制放点可以用二分查到左边的最右边一个能不覆盖到这个点的区间p(有点绕==),然右边最左边的区间设为q,强制放点的代价就为f[p] + f[q] + 1,判一下就好了


细节很多,真的很多很多很多


代码:
#include<cstdio>
#include<vector>
#include<queue>
#include<ctime>
#include<algorithm>
#include<cstdlib>
#include<stack>
#include<cstring>
#include<cmath>
using namespace std;

typedef long long LL;

const int INF = 2147483647;
const int maxn = 100010;
const int segn = 30 * maxn;

struct data{
	int l,r;
}q[maxn];

struct node{
	int x,id;
}stk[maxn];

vector<int> e[maxn];
int n,m,k,top,ans[maxn],ha[maxn],N;
int f[maxn],g[maxn],tot;
int fa[maxn],ed[maxn],Siz[maxn];
int exi[maxn];

inline LL getint()
{
	LL ret = 0,f = 1;
	char c = getchar();
	while (c < '0' || c > '9')
	{
		if (c == '-') f = -1;
		c = getchar();
	}
	while (c >= '0' && c <= '9')
		ret = ret * 10 + c - '0',c = getchar();
	return ret * f;
}

inline int find(int x)
{
	return fa[x] == x ? x : fa[x] = find(fa[x]);
}

inline bool cmp(data a,data b)
{
	return a.l < b.l || (a.l == b.l && a.r > b.r);
}

inline int getr(int x,int i)
{
	int l = i,r = tot;
	while (r - l > 1)
	{
		int mid = l + r >> 1;
		if (q[mid].l <= x) l = mid;
		else r = mid;
	}
	if (q[r].l <= x) return r;
	else return l;
}

inline int getl(int x,int i)
{
	int l = 1,r = i;
	while (r - l > 1)
	{
		int mid = l + r >> 1;
		if (q[mid].r >= x) r = mid;
		else l = mid;
	}
	if (q[l].r >= x) return l;
	else return r;
}

int main()
{
	#ifdef AMC
		freopen("AMC1.txt","r",stdin);
//        freopen("AMC2.txt","w",stdout);
	#endif
	n = getint(); k = getint(); m = getint();
	for (int i = 1; i <= n; i++) fa[i] = i , ed[i] = i;
	for (int i = 1; i <= m; i++)
	{
		int u = getint(),v = getint(),c = getint();
		if (!c)
		{
			int p = ed[find(u - 1)] + 1;
			while (p <= v)
			{
				int x = find(u - 1),y = find(p);
				ed[x] = max(ed[y],ed[x]); 
				fa[y] = x; ed[y] = 0;
				p = ed[x] + 1;
			}
		}
		else q[++tot] = (data){u,v};
	}
	int now = ed[find(0)] + 1;
	while (now <= n)
	{
		ha[++N] = now;
		now = ed[find(now)] + 1;
	}
	if (N == k)
	{
		for (int i = 1; i <= N; i++)
			printf("%d\n",ha[i]);
		return 0;
	}
	for (int i = 1; i <= tot; i++)
	{
		q[i].l = lower_bound(ha + 1,ha + N + 1,q[i].l) - ha;
		int t = lower_bound(ha + 1,ha + N + 1,q[i].r) - ha;
		q[i].r = ha[t] == q[i].r ? t : t - 1;
	}
	sort(q + 1,q + tot + 1,cmp);
	for (int i = 1; i <= tot; i++)
	{
		while (top && stk[top].x >= q[i].r)
			exi[stk[top--].id] = 1;
		stk[++top] = (node){q[i].r,i};
	}
	top = tot; tot = 0;
	for (int i = 1; i <= top; i++)
	{
		if (exi[i]) continue;
		q[++tot] = q[i];
	}
	f[1] = 1; int pos = q[1].r;
	for (int i = 2; i <= tot; i++) 
		if (pos < q[i].l) pos = q[i].r , f[i] = f[i - 1] + 1;
		else f[i] = f[i - 1];
	g[tot] = 1; pos = q[tot].l;
	for (int i = tot - 1; i >= 1; i--)
		if (pos > q[i].r) pos = q[i].l , g[i] = g[i + 1] + 1;
		else g[i] = g[i + 1];
	int p = 0;
	for (int i = 1; i <= tot; i++)
	{
		if (f[i - 1] + 1 != f[i]) continue;
		if (q[i].l == q[i].r) {ans[++p] = q[i].r; continue;}
		int l = getl(q[i].r - 1,i),r = getr(q[i].r - 1,i);
		if (f[l - 1] + g[r + 1] + 1 > k) ans[++p] = q[i].r;
	}
	if (!p) printf("-1");
	else for (int i = 1; i <= p; i++) printf("%d\n",ha[ans[i]]);
	return 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Joky_2002/article/details/79970470
文章标签: 贪心 bzoj
个人分类: 贪心 线段树
上一篇【bzoj4826】[Hnoi2017]影魔
下一篇【bzoj2149】FFT快速傅立叶
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭