【bzoj2811】[Apio2012]Guard

标签: 贪心 bzoj
9人阅读 评论(0) 收藏 举报
分类:

2811: [Apio2012]Guard

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 936  Solved: 401
[Submit][Status][Discuss]

Description

Input

Output

Sample Input

5 3 4
1 2 1
3 4 1
4 4 0
4 5 1


Sample Output

3
5

HINT

在这个样例中,有两种可能的安排方式:1,3,5 或者 2,3,5。即 3 和 5

 

后面必然躲着一个忍者。 

考虑第一个灌木丛,存在一种安排方案使得它的后面躲着忍者,但也存在一

 

种安排方案使得它后面没有躲忍者,因此不应该输出 1。同理,不应该输出 2。

Source

[Submit][Status][Discuss]

很神奇的题目。。。


采集我先想了一个类似差分约束的东西。。。然后发现并不能搞


于是看了一波题解


发现正解原来是。。。。贪心。。。


先把那些肯定没有点的区间给删掉(用一个数据结构),然后把那些包含区间的大区间删掉(因为这些区间肯定没有用)。。


然后把剩下的区间提出来排个序,可以发现左端点和右端点都是单调递增的


于是我们考虑每一个区间,显然他的右端点是最优的,也就是说,右端点是唯一有可能是必须存在的。


判断的话,我们设右端点向左一个点为点u(因为点u显然是次优的),考虑强制放这个点,如果使覆盖所有区间的最小代价变劣了,那么右端点就是必须存在的,反之就不是


实现的话,预处理出f[i]和g[i],表示从第1个到第i个区间覆盖需要多大代价,从第i个区间到第n个区间覆盖需要多大代价,然后强制放点可以用二分查到左边的最右边一个能不覆盖到这个点的区间p(有点绕==),然右边最左边的区间设为q,强制放点的代价就为f[p] + f[q] + 1,判一下就好了


细节很多,真的很多很多很多


代码:
#include<cstdio>
#include<vector>
#include<queue>
#include<ctime>
#include<algorithm>
#include<cstdlib>
#include<stack>
#include<cstring>
#include<cmath>
using namespace std;

typedef long long LL;

const int INF = 2147483647;
const int maxn = 100010;
const int segn = 30 * maxn;

struct data{
	int l,r;
}q[maxn];

struct node{
	int x,id;
}stk[maxn];

vector<int> e[maxn];
int n,m,k,top,ans[maxn],ha[maxn],N;
int f[maxn],g[maxn],tot;
int fa[maxn],ed[maxn],Siz[maxn];
int exi[maxn];

inline LL getint()
{
	LL ret = 0,f = 1;
	char c = getchar();
	while (c < '0' || c > '9')
	{
		if (c == '-') f = -1;
		c = getchar();
	}
	while (c >= '0' && c <= '9')
		ret = ret * 10 + c - '0',c = getchar();
	return ret * f;
}

inline int find(int x)
{
	return fa[x] == x ? x : fa[x] = find(fa[x]);
}

inline bool cmp(data a,data b)
{
	return a.l < b.l || (a.l == b.l && a.r > b.r);
}

inline int getr(int x,int i)
{
	int l = i,r = tot;
	while (r - l > 1)
	{
		int mid = l + r >> 1;
		if (q[mid].l <= x) l = mid;
		else r = mid;
	}
	if (q[r].l <= x) return r;
	else return l;
}

inline int getl(int x,int i)
{
	int l = 1,r = i;
	while (r - l > 1)
	{
		int mid = l + r >> 1;
		if (q[mid].r >= x) r = mid;
		else l = mid;
	}
	if (q[l].r >= x) return l;
	else return r;
}

int main()
{
	#ifdef AMC
		freopen("AMC1.txt","r",stdin);
//        freopen("AMC2.txt","w",stdout);
	#endif
	n = getint(); k = getint(); m = getint();
	for (int i = 1; i <= n; i++) fa[i] = i , ed[i] = i;
	for (int i = 1; i <= m; i++)
	{
		int u = getint(),v = getint(),c = getint();
		if (!c)
		{
			int p = ed[find(u - 1)] + 1;
			while (p <= v)
			{
				int x = find(u - 1),y = find(p);
				ed[x] = max(ed[y],ed[x]); 
				fa[y] = x; ed[y] = 0;
				p = ed[x] + 1;
			}
		}
		else q[++tot] = (data){u,v};
	}
	int now = ed[find(0)] + 1;
	while (now <= n)
	{
		ha[++N] = now;
		now = ed[find(now)] + 1;
	}
	if (N == k)
	{
		for (int i = 1; i <= N; i++)
			printf("%d\n",ha[i]);
		return 0;
	}
	for (int i = 1; i <= tot; i++)
	{
		q[i].l = lower_bound(ha + 1,ha + N + 1,q[i].l) - ha;
		int t = lower_bound(ha + 1,ha + N + 1,q[i].r) - ha;
		q[i].r = ha[t] == q[i].r ? t : t - 1;
	}
	sort(q + 1,q + tot + 1,cmp);
	for (int i = 1; i <= tot; i++)
	{
		while (top && stk[top].x >= q[i].r)
			exi[stk[top--].id] = 1;
		stk[++top] = (node){q[i].r,i};
	}
	top = tot; tot = 0;
	for (int i = 1; i <= top; i++)
	{
		if (exi[i]) continue;
		q[++tot] = q[i];
	}
	f[1] = 1; int pos = q[1].r;
	for (int i = 2; i <= tot; i++) 
		if (pos < q[i].l) pos = q[i].r , f[i] = f[i - 1] + 1;
		else f[i] = f[i - 1];
	g[tot] = 1; pos = q[tot].l;
	for (int i = tot - 1; i >= 1; i--)
		if (pos > q[i].r) pos = q[i].l , g[i] = g[i + 1] + 1;
		else g[i] = g[i + 1];
	int p = 0;
	for (int i = 1; i <= tot; i++)
	{
		if (f[i - 1] + 1 != f[i]) continue;
		if (q[i].l == q[i].r) {ans[++p] = q[i].r; continue;}
		int l = getl(q[i].r - 1,i),r = getr(q[i].r - 1,i);
		if (f[l - 1] + g[r + 1] + 1 > k) ans[++p] = q[i].r;
	}
	if (!p) printf("-1");
	else for (int i = 1; i <= p; i++) printf("%d\n",ha[ans[i]]);
	return 0;
}

查看评论

[BZOJ2811][Apio2012]Guard(线段树+贪心+二分)

人们之所以怀有一丝希望,是因为他们看不见死亡。
  • Clove_unique
  • Clove_unique
  • 2016-05-03 22:02:20
  • 824

bzoj2811 apio2012 守卫 guard 贪心

题目意思很好理解(为什么我会想到查分约束QAQ) ,正解居然是贪心(apio和noi/noip系列确实还是赶脚不一样)     首先要做的是把一定没有忍者的区间删除。用线段树操作比较方便,之后给每一...
  • sjwk2017
  • sjwk2017
  • 2016-04-13 23:49:11
  • 1136

【bzoj2811】APIO2012 守卫 guard

第3次写题解2333
  • LwOGai
  • LwOGai
  • 2016-04-14 10:29:11
  • 893

bzoj 2811: [Apio2012]Guard(线段树+二分)

2811: [Apio2012]Guard Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 555  Solved: 262 [Submit][...
  • clover_hxy
  • clover_hxy
  • 2016-05-03 21:39:03
  • 365

BZOJ2811: [Apio2012]Guard

先将序列中不可能有忍者的位置标出来 如果剩下的位置恰好有K个,要特判直接全部输出然后将每个区间缩掉两端的0 如果存在某两个区间A,B,A包含B,那么A是不必要的 处理完后剩下的区间两两互不包含,...
  • L_0_Forever_LF
  • L_0_Forever_LF
  • 2017-12-05 11:14:04
  • 87

2811: [Apio2012]Guard

2811: [Apio2012]Guard Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 673  Solved: 303 [Submit][...
  • CRZbulabula
  • CRZbulabula
  • 2016-09-13 00:25:36
  • 326

[BZOJ2811][Apio2012]Guard(线段树+二分+贪心)

这篇题解写得真·啰嗦。。然而不说多一些的话过几天我自己都看不懂啦。。...
  • FromATP
  • FromATP
  • 2016-08-20 10:05:57
  • 608

[APIO2012]派遣 解题报告

796. [APIO2012] 派遣 【问题描述】  在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。 在这个帮派里,有一名忍者被称之为Master。除了Master...
  • TA201314
  • TA201314
  • 2015-01-09 20:29:50
  • 990

[BZOJ 2809][Apio2012]dispatching:可持久化线段树|可并堆

点击这里查看原题对于每个忍者被作为管理者的情况,我们需要知道这个忍者管理的忍者中最多能选多少忍者,而要使选的忍者尽可能多,就需要从薪水最低的忍者开始选。 于是可以建立一颗权值线段树,按DFS序将忍者...
  • SmallSXJ
  • SmallSXJ
  • 2017-05-04 14:33:08
  • 157

【APIO2012T1】派遣-贪心+左偏树

【APIO2012T1】派遣-贪心+左偏树
  • Maxwei_wzj
  • Maxwei_wzj
  • 2017-03-26 22:12:17
  • 230
    个人资料
    持之以恒
    等级:
    访问量: 9410
    积分: 1001
    排名: 5万+