【bzoj3489】A simple rmq problem

题目链接

经典套路

记第 i i 个数前一个和他一样的数的位置为pre[i],后一个和他一样的数为 suf[i] s u f [ i ]
然后只有当 pre[i]+1li  and  irsuf[i]1 p r e [ i ] + 1 ≤ l ≤ i     a n d     i ≤ r ≤ s u f [ i ] − 1 时, i i 才会对答案贡献a[i]

把上述不等式看成两维的,把询问 (l,r) ( l , r ) 看成点

然后就相当于预处理覆盖 n n <script type="math/tex" id="MathJax-Element-555">n</script>个矩形,查询点的最大值

二维线段树瞎搞搞

代码

#include<cstdio>
#include<vector>
#include<queue>
#include<ctime>
#include<cstdlib>
#include<stack>
#include<cstring>
#include<cmath>
using namespace std;

typedef long long LL;

const int INF = 2147483647;
const int maxn = 100010;
const int segn = 10 * 20 * maxn;

int n,m,ans,a[maxn],now[maxn],pre[maxn],suf[maxn];
int Rt,tot,rc[segn],lc[segn],maxx[segn],rt[segn];

inline LL getint()
{
    LL ret = 0,f = 1;
    char c = getchar();
    while (c < '0' || c > '9')
    {
        if (c == '-') f = -1;
        c = getchar();
    }
    while (c >= '0' && c <= '9') ret = ret * 10 + c - '0',c = getchar();
    return ret * f;
}

inline int max(int &a,int &b)
{
    return a > b ? a : b;
}

inline void modify(int &o,int l,int r,int al,int ar,int x)
{
    if (!o) o = ++tot;
    if (al <= l && r <= ar) {maxx[o] = max(maxx[o],x); return;}
    int mid = l + r >> 1;
    if (al <= mid) modify(lc[o],l,mid,al,ar,x);
    if (mid < ar) modify(rc[o],mid + 1,r,al,ar,x);
}

inline void Modify(int &o,int l,int r,int xl,int xr,int yl,int yr,int x)
{
    if (!o) o = ++tot;
    if (xl <= l && r <= xr) {modify(rt[o],1,n,yl,yr,x); return;}
    int mid = l + r >> 1;
    if (xl <= mid) Modify(lc[o],l,mid,xl,xr,yl,yr,x);
    if (mid < xr) Modify(rc[o],mid + 1,r,xl,xr,yl,yr,x);
}

inline int query(int o,int l,int r,int pos)
{
    if (l == r) return maxx[o];
    int mid = l + r >> 1;
    if (pos <= mid) return max(maxx[o],query(lc[o],l,mid,pos));
    else return max(maxx[o],query(rc[o],mid + 1,r,pos));
}

inline int Query(int o,int l,int r,int x,int y)
{
    if (l == r) return query(rt[o],1,n,y);
    int mid = l + r >> 1;
    if (x <= mid) return max(query(rt[o],1,n,y),Query(lc[o],l,mid,x,y));
    else return max(query(rt[o],1,n,y),Query(rc[o],mid + 1,r,x,y));
}

int main()
{
    #ifdef AMC
        freopen("AMC1.txt","r",stdin);
        freopen("AMC2.txt","w",stdout);
    #endif
    n = getint(); m = getint();
    for (int i = 1; i <= n; i++)
        a[i] = getint();

    for (int i = 1; i <= n; i++)
    {
        pre[i] = now[a[i]];
        now[a[i]] = i;
    }

    for (int i = 1; i <= n; i++)
        now[a[i]] = n + 1;

    for (int i = n; i >= 1; i--)
    {
        suf[i] = now[a[i]];
        now[a[i]] = i;
    }

    for (int i = 1; i <= n; i++)
    {
        // printf("%d %d %d %d\n",pre[i] + 1,i,i,suf[i] - 1);
        Modify(Rt,1,n,pre[i] + 1,i,i,suf[i] - 1,a[i]);
    }

    for (int i = 1; i <= m; i++)
    {
        int x = getint(),y = getint();
        int l = min((x + ans) % n + 1,(y + ans) % n + 1);
        int r = max((x + ans) % n + 1,(y + ans) % n + 1);
        // printf("%d %d\n",l,r);
        printf("%d\n",ans = Query(Rt,1,n,l,r));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值