Mac环境下搭建ELK(ElasticSearch+LogStash+Kibana)(整理中)

本文详细介绍了如何在Mac环境下搭建ELK平台,包括ElasticSearch、Logstash和Kibana的安装配置,以及使用Head插件监控ES集群状态。通过Logstash收集Java应用日志并存储到ElasticSearch,Kibana则提供日志分析的Web界面,实现日志的集中管理和可视化。
摘要由CSDN通过智能技术生成


# 增加新的参数,这样head插件可以访问es
http.cors.enabled: true
http.cors.allow-origin: "*"

安装Head插件

首先安装npm和grunt

wuqiangdeMacBook-Pro:~ wuqiang$ brew install npm
wuqiangdeMacBook-Pro:~ wuqiang$ npm install -g grunt-cli

/usr/local/bin/grunt -> /usr/local/lib/node_modules/grunt-cli/bin/grunt

+ grunt-cli@1.2.0

added 16 packages in 4.499s

下载git

cd /usr/local/var/
git clone git://github.com/mobz/elasticsearch-head.git
cd elasticsearch-head
npm install
grunt server

http://localhost:9100/




修改服务器监听地址

目录:elasticsearch-5.0.0/plugins/head/Gruntfile.js

connect: {
    server: {
        options: {
            port: 9100,
            hostname: '*',
            base: '.',
            keepalive: true
        }
    }
}

增加hostname属性,设置为*

修改连接地址:

目录:elasticsearch-5.0.0/plugins/head/_site/app.js

修改head的连接地址:

this.base_uri = this.config.base_uri || this.prefs.get("app-base_uri") || "http://localhost:9200";

http://localhost:9100/






启动logstash  :

bin/logstash -e 'input { stdin { } } output { stdout {} }'
http://localhost:9600/




摘要: 前段时间研究的Log4j+Kafka中,有人建议把Kafka收集到的日志存放于ES(ElasticSearch,一款基于Apache Lucene的开源分布式搜索引擎)中便于查找和分析,在研究此方案可行性的时候,我发现ELK(ElasticSearch, Logstash, Kibana)平台恰好可以同时实现日志收集、日志搜索和日志分析的功能,于是又去学习了一番。之后发现如果使用这三者,收集日志也可以不再使用Kafka了,Logstash就可以帮我们完成。当然,虽然Logstash也支持使用Kafka作为数据源输入,但是使用这三者就没有必要再增加系统复杂度了。

ELK平台介绍

在搜索ELK资料的时候,发现这篇文章比较好,于是摘抄一小段:

以下内容来自:http://baidu.blog.51cto.com/71938/1676798

日志主要包括系统日志、应用程序日志和安全日志。系统运维和开发人员可以通过日志了解服务器软硬件信息、检查配置过程中的错误及错误发生的原因。经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误。

通常,日志被分散的储存不同的设备上。如果你管理数十上百台服务器,你还在使用依次登录每台机器的传统方法查阅日志。这样是不是感觉很繁琐和效率低下。当务之急我们使用集中化的日志管理,例如:开源的syslog,将所有服务器上的日志收集汇总。

集中化管理日志后,日志的统计和检索又成为一件比较麻烦的事情,一般我们使用grep、awk和wc等Linux命令能实现检索和统计,但是对于要求更高的查询、排序和统计等要求和庞大的机器数量依然使用这样的方法难免有点力不从心。

开源实时日志分析ELK平台能够完美的解决我们上述的问题,ELK由ElasticSearch、Logstash和Kiabana三个开源工具组成。官方网站:https://www.elastic.co/products

  • Elasticsearch是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。

  • Logstash是一个完全开源的工具,他可以对你的日志进行收集、过滤,并将其存储供以后使用(如,搜索)。

  • Kibana 也是一个开源和免费的工具,它Kibana可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以帮助您汇总、分析和搜索重要数据日志。

----------------------------摘抄内容结束-------------------------------

画了一个ELK工作的原理图:

如图:Logstash收集AppServer产生的Log,并存放到ElasticSearch集群中,而Kibana则从ES集群中查询数据生成图表,再返回给Browser。

 

ELK平台搭建

系统环境

System: Centos release 6.7 (Final)

ElasticSearch: 2.1.0

Logstash: 2.1.1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值