1、看数字和趋势(以电商网站为例)
2、维度分解
3、用户分群(又叫用户画像)
4、转化漏斗
5、行为轨迹
关注行为轨迹,是为了真实了解用户行为。通过大数据手段,还原用户的行为轨迹,有助于增长团队关注用户的实际体验、发现具体问题,根据用户使用习惯设计产品、投放内容。
6、留存分析
在人口红利逐渐消褪的时代,留住一个老用户的成本要远远低于获取一个新用户。我们可以通过数据分析理解留存情况,也可以通过分析用户行为或行为组与回访之间的关联,找到提升留存的方法。除了需要关注整体用户的留存情况之外,还可以关注各个渠道获取用户的留存度,或各类内容吸引来的注册用户回访率,产品团队关注每一个新功能对于用户的回访的影响等等,这些都是常见的留存分析场景。
7、A/B测试
A/B 测试用来对比不同产品设计/算法对结果的影响。
例如过比较实验组(A 组)和对照组(B 组)的访问时长和页面浏览量两个衡量指标,来评估哪一种交互形式更佳。
8、数学建模
当一个商业目标与多种行为、画像等信息有关联性时,我们通常会使用数学建模、数据挖掘的手段进行建模,预测该商业结果的产生。当我们需要预测判断客户的流失时,可以通过用户的行为数据、公司信息、用户画像等数据建立流失模型。利用统计学的方式进行一些组合和权重计算,从而得知用户满足哪些行为之后流失的可能性会更高。