监督学习 算法 人工智能 个人学习笔记(不定时更新)1.监督学习 1.监督学习的 例子一:预测房价 假设现在有一栋750平方英尺的房子,能卖多少钱 1.给算法一个数据集,其中包含正确答案,也就是说我们给算法一个房价数据集,在这个数据集中的每个样本我们都给出正确的价格, 即这个房子的实际卖价,算法的目的就是给出更多正确答案。 2.回归问题: 假如要给一套新房子给出估价,用...
线性回归 公式 人工智能 个人学习笔记(不定时更新)1.监督学习算法例子 1.回归问题 预测房子价格数据集,不同尺寸大小的房子对应不同的售价。假如现在1250平方英尺(绿色箭头)的房子能卖220000美元。 之所以是一个监督学习算法,是因为每个样本都有一个正确答案。而且我们知道数据集中卖出房子的实际大小和价格,而且这还是一个回归问题。 回归是指我们预测一个具体数值的输出,也就是价格数...
无监督学习 人工智能 个人学习笔记(不定时更新)1.监督学习 回顾 1.数据集如下:阳性样本和阴性样本,即良性和恶性 2.对于如下监督学习的每一个样本,我们已经清楚地标识出哪个是正确答案,即是良性还是恶性,给出了明确的定义标签 3.而无监督学习与监督学习相反,无监督学习中的每个样本中都具有相同标签或都没有标签,即没有指定每个样本实际究竟是良性还是恶性2.无监督学习 1.在...
感知机(多层感知机神经网络):平滑激活函数 sigmoid、ReLU 人工智能 个人学习笔记(不定时更新)from keras.models import Sequential from keras.layers.core import Densemodel = Sequential() # 包含 12 个人工神经元的单层网络,有 8 个输入变量(也称为特征)model.add(Dense(12, input_dim = 8, kernel_i...
window下 安装 anaconda(python 3.6 / python 3.7) window下 人工智能 Keras、TensorFlow 的环境安装 总文章window下安装 anaconda(python 3.6 / python 3.7)链接:https://pan.baidu.com/s/1A2i7uPvTUsDf_5F_Jo69bA提取码:u8wv========== 暂时推荐安装 anaconda(python 3.6)======...
成本函数/代价函数、损失函数、目标函数 人工智能 个人学习笔记(不定时更新)目标函数:既可代指损失函数,又可代指代价函数/成本函数。有的地方将损失函数和代价函数没有细分也就是两者等同的。损失函数(Loss function): 损失函数越小,就代表模型拟合的越好。 例如有平方误差损失函数、二分对数损失函数(二元标签预测)、多分类对数损失(多分类标签预测)代价函数/成本函数(Cost funct...
向量化 公式 人工智能 个人学习笔记(不定时更新)1.下图一个常见的线性回归假设函数:hθ(x) 1.没有向量化的公式:hθ(x)=求和公式θ_j*x_j,用于计算j=0到j=n的和。 2.向量化的公式:hθ(x)=θ^T*x 把hθ(x)看作是θ^T乘以x(θ转置乘以x),那么就可以写成计算两个向量的内积,其中向量θ=[θ0,θ1,θ2]。 这里假设有两个特征量,比如特征变量的数...
正规方程 公式 人工智能 个人学习笔记(不定时更新)1.正规方程(区别于迭代方法的直接解法) 对于某些线性回归问题,正规方程能给我们更好的方法来求得参数θ的最优值。 1.前面讲解中一直在使用的线性回归算法是梯度下降法(迭代算法),目的是为了最小化代价函数J(θ)。使用这种梯度下降法(迭代算法)需要经过很多步, 也就是需要梯度下降的多次迭代才能收敛到全局最小值。 相反的,正规方程提供...
梯度下降 算法 人工智能 个人学习笔记(不定时更新)1.梯度下降 1.梯度下降算法的意义:可以将线性回归的代价函数J实现最小化,当然梯度下降还可以最小化其他函数。 2.下面的例子:使用梯度下降算法最小化 任意函数J 下面图示:线性回归定义的的代价函数J,也许是一个需要最小化的其他函数,此时需要使用一个算法来最小化函数J(θ0,θ1)。 注意:梯度下降可应用于更一般的函数,而不仅是线性回归定...
矩阵、向量 人工智能 个人学习笔记(不定时更新)1.矩阵 1.矩阵是指:由数字组成的矩形阵列,并写在方括号内。 2.矩阵例子: 1.先写一个左括号,然后里面是一些数字,这些数字可能来自机器学习问题,也可能表示其他意思,不过现在不用管具体的数字, 然后用右方括号括起来,然后得到一个矩阵。 2.先写一个左括号,然后里面依次写下1、2、3、4、5、6,因此实际上矩阵可以说是二维数组的...
多变量线性回归/多元线性回归 人工智能 个人学习笔记(不定时更新)1.多变量线性回归/多元线性回归 多变量线性回归 又可称作 多元线性回归,即使用多个特征值/变量来预测y。 1.单变量线性回归中,只有一个单一特征值/变量值(房子面积x),那么希望用这个特征值/变量值来预测y(房屋价格)。 单变量的假设函数:hθ(x)=θ0+θ1x。x即为唯一输入的特征值/变量值,h(x)的结果值即为y(房屋价格)。 2...
特征和多项式回归 人工智能 个人学习笔记(不定时更新)4.特征和多项式回归 1.特征选择 下面讨论了不单止可以使用两个特征是房子临街宽度frontage和房子纵深长度depth,还可以把两个特征房子临街宽度frontage和房子纵深长度depth两者相乘 得到一个特征房子面积大小,上面两个方式都可以应用到线性回归模型,也即可以自由徐选择使用什么特征,并通过设计不同的特征,能够用更复杂的函数拟...
多元梯度下降法 人工智能 个人学习笔记(不定时更新)2.多元梯度下降法 1.多元梯度下降法:使用梯度下降法来处理多变量线性回归(多元线性回归)。3.多元梯度下降运算中的实用技巧(均用于优化梯度下降,最终目的均是使下降速度变得更快) 1.特征缩放 特征缩放的作用:使梯度下降的速度变得更快,则收敛所需的迭代次数便更少,这就是特征缩放。 1.首先讨论什么情况下需要特征缩放 ...
window 安装 Octave 人工智能 个人学习笔记(不定时更新)链接:https://pan.baidu.com/s/1OG7dG4jc-RKPa1StflTexA提取码:rlr01.下载页面:https://ftp.gnu.org/gnu/octave/windows/ octave-5.1.0-w64.zip下载链接:https://ftp.gnu.org/gnu/octave/windows/oct...
Logistic 回归 人工智能 个人学习笔记(不定时更新)1.分类 1.要预测的变量y是一个离散值的情况下的分类问题,下面是分类问题的一些例子,比如垃圾邮件分类、分类网上交易、肿瘤分类。 在二元分类问题中,y的取值范围是0或1。多分类问题中,y的取值范围还可以是0、1、2、3。 在这些例子中我们尝试预测的变量y都是可以有两个取值的变量,即0或1。比如说0或1可以分别代表是否垃圾邮件,恶性或良...
卷积神经网络:从头开始构建一个CNN 参考文章:手把手带你走进卷积神经网络!关于对神经网络的介绍原文人工智能 个人学习笔记(不定时更新)动机CNN的经典用例是执行图像分类,例如查看宠物的图像并确定它是猫还是狗。这是一项看似非常简单的任务,你可能会有这样的疑惑:为什么不使用普通的神经网络呢?不得不说这是一个好问题。原因1:图像很大目前用于计算机视觉问题的图像通常为224x224甚至更大。想象一下,构建一个神经...
window 安装 PyTorch window下 人工智能 Keras、TensorFlow、PyTorch、CUDA、cuDNN 的环境安装 总文章window 安装 PyTorch人工智能AI:Keras PyTorch MXNet 深度学习实战(不定时更新)1.安装链接:https://pytorch.org/get-started/locally/ window下装的软件版本:CUDA 9.0、cuDN...
window下安装MXNet 人工智能AI:Keras PyTorch MXNet 深度学习实战(不定时更新)1.《动手学 深度学习》电子书:https://zh.d2l.ai/d2l-zh.pdf2.《动手学 深度学习》官网:https://zh.d2l.ai/3.《动手学 深度学习》github:https://github.com/d2l-ai/d2l-zh4.《动手学 深度学习》代码:https://zh....
window下安装 Keras、TensorFlow(先安装CUDA、cuDNN,再安装Keras、TensorFlow) ======= 人工智能 Keras、TensorFlow 的环境安装 ======1.window下安装 anaconda(python 3.6 / python 3.7)2.安装 ubuntu 16/183.window下安装 Keras、TensorFlow(先安装CUDA、cuDNN,再安装Keras、TensorFlow)===== 第一步:先安装C...