【Codeforces Round #723 (Div. 2)】Codeforces-1526ABCD

A. Mean Inequality

void solves(){
	int n;cin>>n;
	n*=2;
	for(int i=1;i<=n;++i) cin>>a[i];
	sort(a+1,a+1+n);
	int tot=0;
	for(int i=1;i<=n;i+=2){
		b[i]=a[++tot];
	}
	for(int i=2;i<=n;i+=2){
		b[i]=a[++tot];
	}
	for(int i=1;i<=n;++i) cout<<b[i]<<" ";cout<<endl;
}

B. I Hate 1111

void solves(){
	ll x;cin>>x;
	if(x<=100){
		if(x%11==0){
			cout<<"YES\n";return ;
		}
		if(x<11){
			cout<<"NO\n";return ;
		}
	}
	x*=9;
	int n=x%99,m=x/99/10;
	if(n<=9*m)cout<<"YES\n";
	else cout<<"NO\n";
}

C1. Potions (Easy Version)

C2. Potions (Hard Version)

带悔贪心,dp应该也能做

void solves(){
	priority_queue<int> q;
	int n;cin>>n;
	ll sum=0,now=0,ans=0;
	for(int i=0;i<n;++i){
		cin>>now;
		sum+=now;
		if(now>=0) ++ans;
		else q.push(-now);
		while(q.size()&&sum<0){
			sum+=q.top();
			q.pop();
		}
	}
	cout<<ans+q.size()<<endl;
}

D. Kill Anton

前置知识:1.没有学过线性代数的同学需要百度一下逆序对/逆序数的定义 2.树状数组or归并排序求逆序数 3.全排列函数next_permutation的用法

我和张老师口胡出来的引理:给定无序排列通过交换相邻两个元素后变为升序排列(∀i>j,ai≥aj),其最小交换次数为最初无序排列的逆序数。
引理的简单证明:显然,最小交换次数具体实现就是保证每一次交换都使得逆序数减小。而交换两个相邻且不同的元素只会使逆序数+1或-1。我们只需要做使逆序数不断-1的交换即可。

在探究一个无序排列1通过交换相邻元素变为另一个无序排列2的最小交换次数时,我们不妨重新给无序排列2进行人为的权重赋值,使其重新构成升序排列,再将无序排列2重新赋值后的权重一一对应回无序排列1。由此可以将问题抽象成引理的条件。
上面这段话说的可能有点抽象,我们用样例来举个栗子:
要从NNOTA变为ANTON,我们先人为给ANTON进行权重赋值
A N T O N ANTON ANTON    ⟸    \impliedby N N O T A NNOTA NNOTA
1    2    3    4    5 2      5    4    3    1 1\; 2 \; 3 \; 4 \;5 \qquad \quad2 \;\;5\;4\;3\;1 1234525431
显然【25431】的逆序数为7。
需要注意的是,由于我们需要求的是最小移动次数。所以在对NNOTA进行权重排列的时候,应该让相同的字母是按升序排序(为了让逆序数尽可能更小)( ( 1 ) ^{(1)} (1))。所以NNOTA的权重排列应该是【25431】而不是【52431】。

结论:存在一个最佳答案,在该答案中相同类型的元素将连续出现。
该结论的证明思路和官方题解大致相同。其实证明思路不难,只是官方的证明写得抽象,这里我们会讲得相对具体一些。
我们设一段排列为: X X A A . . . A A [ A i ] X X . . . X X [ A j ] A A . . . A A X X XXAA...AA[A_{i}]XX...XX[A_{j}]AA...AAXX XXAA...AA[Ai]XX...XX[Aj]AA...AAXX ,其中X是与A不同的元素。每一个元素都有一个权值 C k C_k Ck,但相同的元素的权值是升序的,这一点我们在( ( 1 ) ^{(1)} (1)) 中阐述过。我们分别设两个[A]的下标为i和j,即 C i < C j C_i < C_j Ci<Cj ( ( 2 ) ) (^{(2)}) ((2))
我们再记 D 1 = ∑ k = i + 1 j − 1 s g n ( C k − C i )    , D 2 = ∑ k = i + 1 j − 1 s g n ( C j − C k ) D_1=\sum_{k=i+1}^{j-1} sgn (C_k−C_i) \; ,D2=\sum_{k=i+1}^{j-1} sgn(C_j−C_k) D1=k=i+1j1sgn(CkCi)D2=k=i+1j1sgn(CjCk)
显然 D 1 + D 2 ≥ 0 D_1+D_2≥0 D1+D20。因为假设 D 1 + D 2 < 0 D_1+D_2<0 D1+D2<0,那么存在 k k k使得 s g n ( C k − C i ) + s g n ( C j − C k ) < 0 sgn(C_k-C_i)+sgn(C_j-C_k)<0 sgn(CkCi)+sgn(CjCk)<0,即 C j < C i C_j<C_i Cj<Ci,与 ( ( 2 ) ) (^{(2)}) ((2))矛盾。
我们由 D 1 + D 2 ≥ 0 D_1+D_2≥0 D1+D20可推出 D 1 ≥ 0 D_1≥0 D10 D 2 ≥ 0 D_2≥0 D20。不失一般性,我们假设 D 1 ≥ 0 D_1≥0 D10
D 1 ≥ 0 D_1≥0 D10时,意味着 [ A i ] [A_i] [Ai] [ A j ] [A_j] [Aj]之间的(j-i-1)个元素中,与 [ A i ] [A_i] [Ai]构成逆序对的个数≥与 [ A j ] [A_j] [Aj]构成逆序对的个数,此时我们将 [ A j ] [A_j] [Aj]移动到i+1的位置上,只会使总的逆序数可能增大( D 1 = 0 D_1=0 D1=0时逆序数不变,>0时逆序数增大),而不会使得总的逆序数减小。为了使得排列的逆序数更大且方便解题,我们尽可能地将相同的元素排列在一起。

当相同的元素排列在一起时,由于最多只有4个不同的元素,所以最多有4!=24种排列方式,可以直接枚举。我们通过枚举最多24种排列的逆序数来确定最大的那个解,复杂度应该可能是O(24*nlogn)

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define ll long long
#define endl '\n'
const int N=2e5+7;
const ll mod=998244353;
using namespace std;
string s;
ll cc[N],b[N];
int ff[]={0,1,2,3};
map<char,int>mp;
ll cnt=0;
void unite(int l,int mid,int r){
	if(l>=r)return ;
    unite(l,(l+mid)>>1,mid);
    unite(mid+1,(mid+1+r)>>1,r);
    int i=l,j=mid+1;
    for(ll k=l;k<=r;++k){
        if(j>r||i<=mid&&cc[i]<=cc[j]) b[k]=cc[i++];
        else b[k]=cc[j++],cnt+=mid-i+1;
    }
    for(ll k=l;k<=r;++k) cc[k]=b[k]; 
}
ll cal(int *qq){
	int len=s.size();
	for(int i=0;i<len;++i){
		for(int j=0;j<4;++j){
			if(mp[s[i]]==qq[j]){
				cc[i]=j;
				break;
			}
		}
	}
	cnt=0;
	unite(0,(len-1)>>1,len-1);
	return cnt;
}
void solves(){
	cin>>s;
	string ans=s,a,n,t,o;
	ll sum=0;
	for(auto x:s){
		if(x=='A')a+='A';
		if(x=='N')n+='N';
		if(x=='T')t+='T';
		if(x=='O')o+='O';
	}
	do{
		ll re=cal(ff);
		if(re>sum){
			sum=re;
			ans.clear();
			for(int i=0;i<4;++i){
				if(ff[i]==0) ans+=a;
				if(ff[i]==1) ans+=n;
				if(ff[i]==2) ans+=t;
				if(ff[i]==3) ans+=o;
			}
		}
	} while(next_permutation(ff,ff+4));
	cout<<ans<<endl;
}
int main(){
	ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
	int OwO=1;
	cin>>OwO;
	mp['A']=0;
	mp['N']=1;
	mp['T']=2;
	mp['O']=3;
	while(OwO--){
		solves();
	}
}

昨天下午开始写到今天下午,从头证到尾的感觉真的爽炸了,呜呜。
致谢:诚挚感谢ginwAa的翻译,诚挚感谢张老师对本题证明过程中一些缺漏的指正。

  • 10
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值