AVL树(平衡二叉树)

本文详细介绍了AVL树的概念、基本结构,重点讲解了平衡因子的作用,包括平衡化处理的方法(左旋、右旋和双旋)、左平衡和右平衡的具体操作,以及AVL树的调整和插入过程。通过实例演示,理解如何确保AVL树保持高效查找性能。
摘要由CSDN通过智能技术生成


一、AVL树的相关概念

1.AVL树

在这里插入图片描述

2.平衡因子

在这里插入图片描述

二、AVL树的基本结构

typedef int KeyType;
typedef struct AVLNode {
	KeyType key;
	AVLNode* leftchild;
	AVLNode* parent;
	AVLNode* rightchild;
	int balance;	//平衡因子
}AVLNode, * AVLTree;

三、AVL树的平衡化处理

什么是平衡化处理?为什么平衡化处理?

在向一棵本来是高度平衡(0,1,-1)的AVL树中插入一个新结点和在BST树一样,区别是,如果树中某个结点的平衡因子的绝对值|balance| > 1,则出现了不平衡,需要做平衡化处理,I使得树中各结点重新平衡化。在这里插入图片描述
在这里插入图片描述

1.左旋

①描述
在这里插入图片描述
②算法思想
在这里插入图片描述
(1)如上图所示,改变各个结点的子指针。定义newroot = ptr->rightchild;ptr->rightchild = newroot->leftchild; newroot->leftchild = ptr;

​ (2)改变各节点的的父指针。从下往上改。先修改60的,如果newroot的左孩子(60)存在就将它的父指针指向ptr,如果ptr的父指针为空,即ptr就是root,直接将root = newroot;然后再判断ptr是ptr->parent的那个结点,最后改变ptr的父指针。

其实各个步骤是紧密联系在一块的。在写代码的时候先写出上图的三步,写出三行代码(1),在(1)的每行的后面添加(2)的代码。

③代码展示:

void RotateLeft(AVLTree& root, AVLNode* ptr)
{
	AVLNode* newroot = ptr->rightchild;
	newroot->parent = ptr->parent;

	ptr->rightchild = newroot->leftchild;
	if (newroot->leftchild != nullptr)
	{
		newroot->leftchild->parent = ptr;
	}
	newroot->leftchild = ptr;
	if(ptr->parent == nullptr)
	{
		root = newroot;
	}
	else
	{
		if (ptr->parent->leftchild == ptr)
		{
			ptr->parent->leftchild = newroot;
		}
		else
		{
			ptr->parent->rightchild = newroot;
		}
	}
	ptr->parent = newroot;
}

2.右旋

①描述: 和左旋是相反的,对称的。
②代码展示

void RotateRight(AVLTree& root, AVLNode* ptr)
{
	AVLNode* newroot = ptr->leftchild;
	newroot->parent = ptr->parent;
	ptr->leftchild = newroot->rightchild;
	if (newroot->rightchild != nullptr)
	{
		newroot->rightchild->parent = ptr;
	}
	newroot->rightchild = ptr;
	if (ptr->parent == nullptr)
	{
		root = newroot;
	}
	else
	{
		if (ptr->parent->leftchild == ptr)
		{
			ptr->parent->leftchild = newroot;
		}
		else
		{
			ptr->parent->rightchild = newroot;
		}
	}
	ptr->parent = newroot;
}

3.双旋

**描述:**双旋是指先左后右,或者先右后左,调用左旋右旋就可以了。

左平衡处理

**①描述:**左平衡处理是指,由于在左子树上插入数据导致的AVL树发生的失衡的处理。分为右单旋和双旋(先左旋后右旋)。如下图。
在这里插入图片描述
②算法描述:
(1)关于变量:ptr为发生不平衡的结点 leftsub为他的左节点。

​ (2)我们先判断leftsub的平衡因子来判断是在哪个子树上插入的数据。如果balance0,说明是出于平衡状态的。如果balance-1,说明是在左子树上插入的,这是一条直线,调整旋转后的平衡因子,然后右旋就可以了。如果balance == 1,说明在右子树上插入的,判断在rightsub的平衡因子,再进行调整平衡因子,然后执行相应的旋转就可以了。

(3)关于rightsub->balance == 0的特殊情况。

在这里插入图片描述
关于如何确定调整之后的平衡因子:

③代码展示:

void LeftBalance(AVLTree& tree, AVLNode* ptr)
{
	//在哪发生不平衡,ptr就是哪个结点
	AVLNode* leftsub = ptr->leftchild;
	AVLNode* rightsub = nullptr;
	switch (leftsub->balance)
	{
	case 0:
		cout << "已经平衡\n"; break;
	case -1:    //直线
		leftsub->balance = 0;
		ptr->balance = 0;
		RotateRight(tree, ptr);
		break;
	case 1:		//在右子树插入,折线,先左后右
		rightsub = leftsub->rightchild;
		switch (rightsub->balance)
		{
		case 1:
			ptr->balance = 0;
			leftsub->balance = -1;
			break;
		case 0:
			ptr->balance = 0;
			leftsub->balance = 0;
			break;
		case -1:
			ptr->balance = 1;
			leftsub->balance = 0;
			break;
		}
		rightsub->balance = 0;    //rightsub的平衡因子最后一定为0
		RotateLeft(tree, leftsub);
		RotateRight(tree, ptr);
		break;
	}
}

右平衡处理

描述:

和左平衡处理相反。
在这里插入图片描述

②代码展示:

void RightBalance(AVLTree& tree, AVLNode* ptr)
{
	AVLNode* rightsub = ptr->rightchild;
	AVLNode* leftsub = nullptr;
	switch (rightsub->balance)
	{
	case 0:
		cout << "已经平衡\n"; break;
	case 1:		//直线,在右子树上插入
		ptr->balance = 0;
		rightsub->balance = 0;
		RotateLeft(tree, ptr);
		break;
	case -1:
		leftsub = rightsub->leftchild;
		switch (leftsub->balance)
		{
		case 1:
			rightsub->balance = 0;
			ptr->balance = -1;
			break;
		case 0:
			rightsub->balance = 0;
			ptr->balance = 0;
			break;
		case -1:
			rightsub->balance = 1;
			ptr->balance = 0;
		}
		leftsub->balance = 0;
		RotateRight(tree, rightsub);
		RotateLeft(tree, ptr);
		break;
	}
}

四、AVL树的调整

①描述:

根据插入的情况对AVL树的平衡因子进行相应的调整,不平衡时进行相应的旋转。

②算法思想:

定义一个父节点,循环直到父节点为空。进行判断是否需要进行调整。每次只看ptr是父节点的哪个孩子,然后再判断是否需要调整。如果添加之后(或者经过调整之后),父节点的平衡因子等于0,就不需要在往下进行循环判断了。

③代码展示:

void Adjust_AVL(AVLTree& tree, AVLNode* ptr)
{
	AVLNode* pa = ptr->parent;
	bool high = true;
	while (high && pa != nullptr)
	{
		if (pa->leftchild == ptr)     //在左边插入
		{
			switch (pa->balance)
			{
			case 0:		//原来pa的平衡因子为0,在左边插入之后-1
				pa->balance = -1;
				break;
			case -1:
				LeftBalance(tree, pa); //-1之后变成-2,需要调整
				high = false; //平衡之后就不用再判断了
				break;
			case 1:
				pa->balance = 0;
				high = false;  //并没有改变树的高度,插入之后变得更平衡了,所以不用再往下判断了
				break;
			}
		}
		else
		{
			switch(pa->balance)
			{
			case 0:
				pa->balance = 1;
				break;
			case -1:
				pa->balance = 0;
				high = false;
				break;
			case 1:
				RightBalance(tree, pa);
				high = false;
				break;
			}
		}
        ptr = pa;
		pa = ptr->parent;
	}
}

五、AVL树的插入

①算法思想:

和普通二叉树插入的思想类似,每次插入一个结点都要对这个结点进行一次调整。传入的指针就是新插入的结点。

②代码展示:

void Insert(AVLTree& root, KeyType val)
{
	AVLNode* p = root;
	AVLNode* pa = nullptr;
	AVLNode* newnode = BuyNode(val);
	assert(newnode != nullptr);

	if (p == nullptr)
	{
		root = newnode;
		newnode->parent = nullptr;
		return;
	}

	while (p != nullptr )
	{
		if (p->key == val)
		{
			free(newnode);
			return;
		}
		pa = p;
		p = p->key > val ? p->leftchild : p->rightchild;
	}
	newnode->parent = pa;
	if (val > pa->key)
	{
		pa->rightchild = newnode;
	}
	else
	{
		pa->leftchild = newnode;
	}
	Adjust_AVL(root, newnode);   //对插入的结点进行调整
}

测试

void AVL_InOrder(AVLNode* tree)
{
	AVLNode* p = tree;
	if (tree == nullptr)
	{
		return;
	}
	AVL_InOrder(p->leftchild);
	cout << p->key << " ";
	AVL_InOrder(p->rightchild);
}
void AVL_PreOrder(AVLNode* tree)
{
	AVLNode* p = tree;
	if (tree == nullptr)
	{
		return;
	}
	cout << p->key << " ";
	AVL_PreOrder(p->leftchild);
	AVL_PreOrder(p->rightchild);
}
int main()
{
	vector<int> vc = { 56,45,78,67,89,76};
	AVLTree tree = nullptr;
	for (auto& x : vc)
	{
		Insert(tree, x);
	}

	AVL_InOrder(tree); cout << endl;
	AVL_PreOrder(tree); cout << endl;
	return 0;
}

结果如下:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值