杭电多校第四场个人题解

7177-Link with Equilateral Triangle

不存在满足题意的三角形,输出no即可


#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define debug system("pause")

const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;

void solve(){
 int n;cin>>n;
 cout<<"No\n";
}

int main(){
    js;
    int T;cin>>T;
    while(T--) solve();
    debug;
}

7179-BIT Subwaya

ans1计算

f(x)=\left\{\begin{matrix} x& & \\ 100+(x-100)*0.8& &\\ 200+(x-225)*0.5 && \end{matrix}\right.

ans2按照题意累加即可


#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define debug system("pause")
#define ll long long
#define endl "\n"
#define show(x) cout<<#x<<"="<<x<<endl


const int N = 1e5+5;
int v[N];
double ans1,ans2,s;

void solve(){
    int n;cin>>n;
    ans2=0;s=0;
    for(int i=1;i<=n;i++) {
        cin >> v[i];
        s += v[i];
      if(ans2<100) {
        ans2 += v[i];
        }
      else if(ans2<200) {
        ans2 += 0.8*v[i];
        }
      else{
        ans2 += 0.5*v[i];
        }
    }

    if(s<=100) {
      ans1=s;
      }
    else if(s<=225) {
      ans1=100+(s-100)*0.8;
      }
    else {
      ans1=200+(s-225)*0.5;
      }

    cout<<fixed<<setprecision(3)
        <<ans1<<" "<<ans2<<endl;
}

int main(){
    js;
    int T;cin>>T;
    while(T--) solve();
    debug;
}

7184-Link is as bear

求数组n的最大亦或和,套用线性基模板即可

#include<bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define debug system("pause")
#define ll long long
#define endl "\n"
//线性基模板
struct L_B
{
    const static int BASE = 63;
    long long d[BASE], p[BASE];
    int cnt, flag;
    void init()
    {
        memset(d, 0, sizeof(d));
        memset(p, 0, sizeof(p));
        cnt = 0;
        flag = 0;
    } // 1e18以内的数都适用.
    inline bool insert(long long val)
    {
        for (int i=BASE- 1; i >= 0; i--)
        {
            if (val & (1ll << i))
            {
                if (!d[i])
                {
                    d[i] = val;
                    return true;
                }
                val ^= d[i];
            }
        }
        flag = 1; //可以异或出0
        return false;
        // 可判断val是否存在于线性基当中.
    }
    long long query_max()
    {
        long long res = 0;
        for (int i = BASE - 1; i >= 0; i--)
        {
            if ((res ^ d[i]) > res)
                res ^= d[i];
        }
        return res;
    }
    long long query_min()
    { // 应该预先判断能否是0的情况..QAQ
        if (flag)
            return 0;
        for (int i = 0; i <= BASE - 1; i++)
        {
            if (d[i])
                return d[i];
        }
    }
    void rebuild()
    { // 用于求第k小值.需要先进行独立预处理
        for (int i = BASE - 1; i >= 0; i--)
        {
            for (int j = i - 1; j >= 0; j--)
            {
                if (d[i] & (1ll << j))
                    d[i] ^= d[j];
            }
        }
        for (int i = 0; i <= BASE - 1; i++)
        {
            if (d[i])
                p[cnt++] = d[i];
        }
    }
    long long kthquery(long long k)
    {             // 注意判断原序列异或出0的情况, 此时应该将k -- 在进行后面的操作.
        if (flag) //判0
            --k;
        if (!k)
            return 0;
        long long res = 0;
        if (k >= (1ll << cnt))
            return -1;
        for (int i = BASE - 1; i >= 0; i--)
        {
            if (k & (1LL << i))
                res ^= p[i];
        }
        return res;
    }
    void Merge(const L_B &b)
    { // 把b这个线性基插入到当前这个线性基中.
        for (int i = BASE - 1; i >= 0; i--)
            if (b.d[i])
                insert(b.d[i]);
    }
} LB;

void solve(){
    L_B l;
    l.init();
    int n;cin>>n;
    for(int i=0;i<n;i++){
        ll x;cin>>x;
        l.insert(x);
    }
    cout<<l.query_max()<<endl;
}
int main(){
    js;
    int T;cin>>T;
    while(T--) solve();
    debug;
}
  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值