Deep Instance Segmentation with Automotive Radar Detection Points
基于汽车雷达检测点进行深度实例分割
论文连接:https://ieeexplore.ieee.org/abstract/document/9762032/
引用信息:
@article{liu2022deep,
title={Deep instance segmentation with automotive radar detection points},
author={Liu, Jianan and Xiong, Weiyi and Bai, Liping and Xia, Yuxuan and Huang, Tao and Ouyang, Wanli and Zhu, Bing},
journal={IEEE Transactions on Intelligent Vehicles},
year={2022},
publisher={IEEE}
}
1 引言
雷达探测点比LiDAR提供更多信息,但分辨率低且点云稀疏,语义上是模糊的,不适合直接使用用于密集LiDAR点开发的方法。(车载雷达区别于激光雷达)
三种常用基于点云的实例分割方法
点云转换为三维网格状,或将其投影为二维网格状表示 | 需要大量的内存、高计算能力,并且在转换中引入量化误差 |
---|---|
基于一维卷积滤波器的神经网络直接处理 | 克服量化误差,神经网络编码器由于其稀疏性,很难捕捉到雷达探测点的空间交互作用 |
使用聚类算法来估计哪些点属于同一物体 | 性能有限,最大限度减少内存消耗,有利于实时处理 |
两方面挑战:(1)局部信息缺失,如何解决探测点稀疏和模糊性?(2)实时处理,轻量级与高性能?
本文提出:
- 新引入一个head估计点中心偏移量(CSV)(检测点到几何中心偏移),通过预测检测点向中心点移动的CSV进行分类,提高聚类准确性
- 语义分割训练过程中余弦相似性CS和归一化内积NIP,loss函数,提高训练确性
- 引入视觉多层感知器 gMLP(基于带有门控的多层感知器)提高模型表现
- 平均覆盖率(mCov)和平均精度(mAP)都高于聚类分类和端到端分类;内存消耗和推理时间对汽车MCU可行
3 方法
-
基于语义分割的聚类
首先进行语义分割,然后对每一类检测点应用聚类方法(具有不同语义信息的点几乎不属于同一实例)
PointNet++语义分割→→逐点分类分支,标签→→引入CSV向中心偏移 实例分割
- 预测过程:
LSEM:语义分割的交叉熵损失
LSHIFT:CSVs预测的损失(余弦相似性CS loss和归一化内积NIP loss 的和)
- 视觉多层感知机
SA无法捕捉全局特征,引入视觉MLPs。visual MLPs 继承传统MLPs和visual transformers 的优点,整合到PointNet++的每个SA和FP层中。
-
采用gMLP
核心是空间门控单元SGU,根据全局和局部信息对提取的特征进行调整。
4 实验及结果
RadarScenes数据集
- 五个类:汽车,行人,一群行人,大型车辆,两轮车;动态点选取,合并与舍弃
参数设置
- 每一帧点不同数量→随机抽样,统计数字→根据检测点样本大小设置,避免遗漏和计算量过大
对现有方法实验
-
基于聚类的汽车雷达实例分割分类策略:DBSCAN聚类 , random forest classifier
-
针对密集点云设计的基于深度学习的端到端实例分割方法:
该模型将三个端点连接到pointnet++,预测相似矩阵S来估计任意一对点属于同一实例的可能性,预测相似置信度映射MCF来估计相似结果的不确定性,预测语义分割映射MSEM来提供每个点的语义信息估计…
结果
以空间坐标、速度(补偿)和RCS值作为输入,报告原始测点的平均覆盖率(mCov)和平均平均精度(mAP), IoU阈值为0.5 (mAP0.5),用于最终实例预测。、
变量:损失函数、CSV;注意力机制orMLP
-
CSV+CS+NIP: mCov的改善不如mAP:mCov受平均操作影响大,将点移到实例的中心并聚类会增加真阳性预测的数量,这将提高mAP
-
所有模型占用的存储空间都小于1MB到2MB,可嵌入实际系统
-
aMLP:在gMLP空间门控单元附加一个微小自注意力模块,提高性能
将gMLP/aMLP附加到pointnet++后有显著改进
与ground truth对比,gMLP增强语义分割聚类能得到最准确的结果
-
内存还可以压缩:使用分组卷积代替pointnet++中的传统卷积,降低gMLP块中空间门控单元输入维数
5 结论
基于pointnet++和DBSCAN的基于语义分割的聚类,优化模型参数和损失函数的基础上,引入了gMLP/aMLP并增强