【论文笔记】Deep Instance Segmentation with Automotive Radar Detection Points

Deep Instance Segmentation with Automotive Radar Detection Points

基于汽车雷达检测点进行深度实例分割

论文连接:https://ieeexplore.ieee.org/abstract/document/9762032/
引用信息:

@article{liu2022deep,
  title={Deep instance segmentation with automotive radar detection points},
  author={Liu, Jianan and Xiong, Weiyi and Bai, Liping and Xia, Yuxuan and Huang, Tao and Ouyang, Wanli and Zhu, Bing},
  journal={IEEE Transactions on Intelligent Vehicles},
  year={2022},
  publisher={IEEE}
}

1 引言

雷达探测点比LiDAR提供更多信息,但分辨率低且点云稀疏,语义上是模糊的,不适合直接使用用于密集LiDAR点开发的方法。(车载雷达区别于激光雷达)

三种常用基于点云的实例分割方法

点云转换为三维网格状,或将其投影为二维网格状表示需要大量的内存、高计算能力,并且在转换中引入量化误差
基于一维卷积滤波器的神经网络直接处理克服量化误差,神经网络编码器由于其稀疏性,很难捕捉到雷达探测点的空间交互作用
使用聚类算法来估计哪些点属于同一物体性能有限,最大限度减少内存消耗,有利于实时处理

两方面挑战:(1)局部信息缺失,如何解决探测点稀疏和模糊性?(2)实时处理,轻量级与高性能?

本文提出:

  1. 新引入一个head估计点中心偏移量(CSV)(检测点到几何中心偏移),通过预测检测点向中心点移动的CSV进行分类,提高聚类准确性
  2. 语义分割训练过程中余弦相似性CS和归一化内积NIP,loss函数,提高训练确性
  3. 引入视觉多层感知器 gMLP(基于带有门控的多层感知器)提高模型表现
  4. 平均覆盖率(mCov)和平均精度(mAP)都高于聚类分类和端到端分类;内存消耗和推理时间对汽车MCU可行

3 方法

  1. 基于语义分割的聚类

    首先进行语义分割,然后对每一类检测点应用聚类方法(具有不同语义信息的点几乎不属于同一实例)

在这里插入图片描述

PointNet++语义分割→→逐点分类分支,标签→→引入CSV向中心偏移 实例分割

  • 预测过程:

在这里插入图片描述

LSEM:语义分割的交叉熵损失

LSHIFT:CSVs预测的损失(余弦相似性CS loss和归一化内积NIP loss 的和)

  1. 视觉多层感知机

SA无法捕捉全局特征,引入视觉MLPs。visual MLPs 继承传统MLPs和visual transformers 的优点,整合到PointNet++的每个SA和FP层中。

  1. 采用gMLP

    核心是空间门控单元SGU,根据全局和局部信息对提取的特征进行调整。

在这里插入图片描述

4 实验及结果

RadarScenes数据集

  • 五个类:汽车,行人,一群行人,大型车辆,两轮车;动态点选取,合并与舍弃

参数设置

  • 每一帧点不同数量→随机抽样,统计数字→根据检测点样本大小设置,避免遗漏和计算量过大

对现有方法实验

  • 基于聚类的汽车雷达实例分割分类策略:DBSCAN聚类 , random forest classifier

  • 针对密集点云设计的基于深度学习的端到端实例分割方法:

    该模型将三个端点连接到pointnet++,预测相似矩阵S来估计任意一对点属于同一实例的可能性,预测相似置信度映射MCF来估计相似结果的不确定性,预测语义分割映射MSEM来提供每个点的语义信息估计…

结果

以空间坐标、速度(补偿)和RCS值作为输入,报告原始测点的平均覆盖率(mCov)和平均平均精度(mAP), IoU阈值为0.5 (mAP0.5),用于最终实例预测。、

在这里插入图片描述

变量:损失函数、CSV;注意力机制orMLP

  • CSV+CS+NIP: mCov的改善不如mAP:mCov受平均操作影响大,将点移到实例的中心并聚类会增加真阳性预测的数量,这将提高mAP

  • 所有模型占用的存储空间都小于1MB到2MB,可嵌入实际系统

  • aMLP:在gMLP空间门控单元附加一个微小自注意力模块,提高性能

    将gMLP/aMLP附加到pointnet++后有显著改进

    与ground truth对比,gMLP增强语义分割聚类能得到最准确的结果

  • 内存还可以压缩:使用分组卷积代替pointnet++中的传统卷积,降低gMLP块中空间门控单元输入维数

5 结论

基于pointnet++和DBSCAN的基于语义分割的聚类,优化模型参数和损失函数的基础上,引入了gMLP/aMLP并增强

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值