题意:给定n个坐标,求其中一个坐标到其他坐标之和的最小值。
http://acm.hdu.edu.cn/showproblem.php?pid=4311
解:
1.按x排序。 求sumx[]。 sumx[i]表示前i个包括i的x坐标之和。 并且记录按x排序时的位置id。(坐标和,不是距离和)
2.按y排序。求sumy[i];
3.对于每个i, ( p[i].y ) * (i) - sumy[i] 表示在i点下方的点和i点的纵向距离之和,(sumy[n] - sumy[i] - (p[i].y) * (n - i) )表示在i点上方的点和i点的纵向距离之和。
( p[i].x ) * (j) - sumx[j]表示在i点左方的点和i点的横向距离之和,(sumx[n] - sumx[j] - (p[i].x) * (n - j) )表示在i点右方的点和i点的横向距离之和。(j是按照x排序时的现在下标为i的下标)
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#define maxn 100010
typedef long long L;
using namespace std;
struct Node{
L x,y;
int id;
} p[maxn];
L sumx[maxn],sumy[maxn];
bool cmpx(Node a , Node b){
return a.x < b.x;
}
bool cmpy(Node a, Node b){
return a.y < b.y;
}
int T, n;
int main(){
scanf("%d",&T);
while(T --){
scanf("%d",&n);
for(int i = 1; i <= n; ++ i){
scanf("%I64d%I64d", &p[i].x, &p[i].y);
}
sort(p + 1, p + 1 + n, cmpx);
sumx[1] = p[1].x;p[1].id = 1;
for(int i = 2; i <= n; ++ i){
sumx[i] = sumx[i - 1] + p[i].x;
p[i].id = i;
}
sort(p + 1, p + 1 + n, cmpy);
sumy[1] = p[1].y;
for(int i = 2; i <= n; ++ i){
sumy[i] = sumy[i - 1] + p[i].y;
}
L ans = 1; ans <<= 60;//
for(int i = 1; i <= n; i ++){
int j = p[i].id;
L yy = ( p[i].y ) * (i) - sumy[i];
yy += (sumy[n] - sumy[i] - (p[i].y) * (n - i) );
L xx = ( p[i].x ) * (j) - sumx[j];
xx += (sumx[n] - sumx[j] - (p[i].x) * (n - j) );
xx += yy;
ans = min(xx,ans);
}
printf("%I64d\n", ans);
}
return 0;
}
)
2.按y排序,求sumy[]。
3. 对于任意一点i, ( p[i].y ) * (i) - sumy[i] 为i点下边的点的纵向距离和,(sumy[n] - sumy[i] - (p[i].y) * (n - i) )为i点上边的点的纵向距离和。
同时:( p[i].x ) * (id) - sumx[id]为i点左边的点的横向距离和, (sumx[n] - sumx[j] - (p[i].x) * (n - j) )为i点右边的点的横向距离和。
坐标写错了,调不出来。