Kafka的Exactly Once
聊到Kafka的Exactly Once,首先就必须对Kafka的Producer和Consumer的工作模式有个基础了解,我们先来看看Kafka Producer的工作模式:
1.Kafka Producer
Kafka Producer的数据可靠性机制规定如下:
为保证 producer 发送的数据,能可靠的发送到指定的 topic, topic 的每个 partition 收到producer 发送的数据后, 都需要向 producer 发送ack(acknowledgement 确认收到) ,如果producer 收到 ack, 就会继续进行下一轮的发送,否则重新发送数据;(注意:producer走的实际是异步发送的方法,数据可靠性保证指的是如果prodecer没有收到ack,会不断重发,但并不影响其自身异步发送的方式)
1) 副本数据同步策略:
- 半数以上完成同步, 就发送 ack
优点:延迟低
缺点:选举新的 leader 时, 容忍 n 台 节点的故障,需要 2n+1 个副本(因为必须有一半以上节点确定是有数据的,挂掉了n台,这n台的数据就肯定是没有的,但是又要求一半以上有数据,所以必须要有2n+1台)
- 全部完成同步,才发送 ack
优点:选举新的 leader 时,容忍 n 台节点的故障,需要 n+1 个副本(全部同步完成,且只要有一台活着传送数据即可,所以需要n+1个)
缺点:延迟高
Kafka 选择了第二种方案,原因如下:
1.同样为了容忍 n 台节点的故障,第一种方案需要 2n+1 个副本,而第二种方案只需要 n+1个副本,而 Kafka 的每个分区都有大量的数据, 第一种方案会造成大量数据的冗余。
2.虽然第二种方案的网络延迟会比较高,但网络延迟对 Kafka 的影响较小
采用第二种方案之后,设想以下情景: leader 收到数据,所有 follower 都开始同步数据,但有一个 follower,因为某种故障,迟迟不能与 leader 进行同步,那 leader 就要一直等下去,直到它完成同步,才能发送 ack。这个问题怎么解决呢?
针对第二种方案,kafka做了优化,具体如下:
2) ISR
Leader 维护了一个动态的 in-sync replica set (ISR)(同步副本),意为和 leader 保持同步的 follower 集合,即每个partition动态维护一个replication集合。当 ISR 中的 follower 完成数据的同步之后, leader 就会给 follower 发送 ack。如果 follower长 时 间 未 向 leader 同 步 数 据 , 则 该 follower 将 被 踢 出 ISR , 该 时 间 阈 值 由 replica.lag.time.max.ms 参数设定。最终目的为在 Leader 发生故障之后,就会从 ISR 中选举新的 leader,不影响使用。
注意:
-
对于一个partition,集合中每个replication都同步完后,kafka才会将该消息标记为“已提交”状态,认为该条消息发送成功
-
只要这个集合中至少存在一个replication或者,已提交的信息就不会丢失
-
当一小部分replication开始落后于leader replication的速度时,就踢出ISR
-
被踢出去的replication还在同步,只是不算在ISR里。被踢出去的同步追上leader后,又重新计入ISR;
bin/kafka-topics.sh --describe --topic first --zookeeper hadoop102:2181
# 输出
Topic:first PartitionCount:1 ReplicationFactor:3 Configs:
Topic: first Partition: 0 Leader: 3 Replicas: 3,4,2 Isr: 3
# 看最后的ISR
老版本中两个条件: leader与follower消息差距条数、距离上次同步的时间
任意一个维度超过阈值都会把 Follower 剔除出 ISR,存入 OSR(Outof-Sync Replicas)列表,新加入的 Follower也会先存放在 OSR 中。
leader和follower发消息差距大于10条就踢出ISR,如果小于10条再加进来。为什么踢出ISR还会又加进来呢?因为ISR只是决定了什么时候返回ACK,而无论在不在ISR里,都仍在继续同步数据。我们不能因为他慢了点就直接不用他备份。
生产者以batch(批量发送)发送数据,比如这个batch12条,如果batch大于设定的10条阻塞限制,那么所有的follower都被踢出ISR。频繁发送batch,就频繁加入ISR,踢出ISR,频繁操作ZK
所以新版本中删除了一个条件: leader与follower消息差距条数;
3) ack 应答机制
- acks=0: producer 不等待 broker 的 ack;这一操作提供了一个最低的延迟, broker一接收到还没有写入磁盘就已经返回,当 broker 故障时有可能丢失数据;
- acks=1: producer等待broker的ack;partition的leader 落盘(写入磁盘)成功后返回ack(只等待leader写完就发回ack),如果在 follower同步成功之前leader故障,那么将会丢失数据;
- acks=-1(all):producer 等待 broker 的 ack;partition的leader和follower(指的是ISR里的follower) 全部落盘成功后才返回ack。但是如果在follower同步完成后, broker发送ack之前,leader发生故障,那么会造成数据重复。特殊情况下也可能丢失数据:比如ISR中只有一个leader(follower太慢都被踢出去了),leader写完了就发送ACK,但是还没同步就挂掉了,此时也会丢失数据。(生产者以为成功了,不会再发送了)
-
4) 故障处理细节
leader故障后,follower一个同步到8条数据,一个同步到9条数据,结果选了8条数据的foller为新leader:
此时会造成问题:9条数据的follower数据与新leader不一致;
或者:follower一个同步到8条数据,一个同步到9条数据,结果选了9条数据的foller为新leader:
结果原来的10条数据的leader又重启了,还是会产生数据不一致的问题;
LEO:每个副本最大的offset;
HW:消费者能见到的最大的offset,ISR队列中最小的LEO;
在上述例子中,LE0=10,HW=8;HW之前的数据才对Consumer可见;
但是若新leader选出来之后就直接写数据,会造成数据在follower和leader之间位置不一致的问题,所以又有了以下解决方法:
(以下方法只能保证数据一致性问题,不能保证数据不丢失或是不重复);
(1) follower 故障
follower 发生故障后会被临时踢出 ISR,待该 follower 恢复后, follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。
等该 follower 的 LEO 大于等于该 Partition 的 HW(现在的),即 follower 追上 leader 之后,就可以重新加入 ISR 了。
(2) leader 故障
leader 发生故障之后,会从 ISR 中选出一个新的 leader,之后,为保证多个副本之间的数据一致性,(ISR中的) 其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader同步数据。
Exactly Once 语义(精准一次性)
将服务器的 ACK 级别设置为-1,可以保证 Producer 到 Server 之间不会丢失数据,即 At Least Once 语义。相对的,将服务器 ACK 级别设置为 0,可以保证生产者每条消息只会被发送一次,即 At Most Once 语义。
At Least Once 可以保证数据不丢失,但是不能保证数据不重复;相对的, At Most Once可以保证数据不重复,但是不能保证数据不丢失。
但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即 Exactly Once 语义。在 0.11 版本以前的 Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。
后续版本引入一个新概念:幂等性:
At Least Once + 幂等性 = Exactly Once
特点:要启用幂等性,只需要将 Producer 的参数中 enable.idompotence 设置为 true 即可。 Kafka的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的 Producer 在初始化的时候会被分配一个 PID,发往同一 Partition 的消息会附带 Sequence Number。而Broker 端会对<PID, Partition, SeqNumber>做缓存,当具有相同主键的消息提交时,Broker 只会持久化一条。
注意:这里的pid和zookeeper里的那个pid不是一样的,这里的pid指的是producer的id,每一次producer挂掉重启后,会获得一个新的pid,而不同的partition的主键也有所不同,所以幂等性无法保证跨分区跨会话(不同次会话)的Exactly Once;
后来的kafka版本引入了事务,保证了跨分区跨会话的Exactly Once的性质。(见后续事务讲解部分)
Producer 事务
Exactly Once + producer事务 = 精准一致写到kafka集群;
为了实现跨分区跨会话的事务,**需要引入一个全局唯一的 Transaction ID,并将 Producer获得的PID 和Transaction ID 绑定。**这样当Producer 重启后就可以通过正在进行的 Transaction ID 获得原来的 PID。
为了管理 Transaction, Kafka 引入了一个新的组件 Transaction Coordinator。 Producer 就是通过和 Transaction Coordinator 交互获得 Transaction ID 对应的任务状态。 Transaction Coordinator 还负责将事务所有写入 Kafka 的一个内部 Topic,这样即使整个服务重启,由于事务状态得到保存,进行中的事务状态可以得到恢复,从而继续进行。
所以这才是真正实现了Kafka Producer的Exactly Once。
2.Kafka Consumer分析
2.1消费方式:
consumer 采用 pull(拉) 模式从 broker 中读取数据。
push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由 broker 决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成 consumer 来不及处理消息, 典型的表现就是拒绝服务以及网络拥塞。而 pull 模式则可以根据 consumer 的消费能力以适当的速率消费消息。
pull 模式不足之处是,如果 kafka 没有数据,消费者可能会陷入循环中, 一直返回空数据。 针对这一点, Kafka 的消费者在消费数据时会传入一个时长参数 timeout,如果当前没有数据可供消费, consumer 会等待一段时间之后再返回,这段时长即为 timeout
2.2、分区分配策略
一个 consumer group 中有多个 consumer,一个 topic 有多个 partition,所以必然会涉及到 partition 的分配问题,即确定那个 partition 由哪个 consumer 来消费。
Kafka 有两种分配策略,一是 RoundRobin,一是 Range 。
触发时机:消费者组里个数发生变化时。(包括消费者启动时和发生改变时)
1) RoundRobin
把所有的 partition 和所有的 consumer 都列出来,然后按照 hashcode 进行排序,最后通过轮询算法来分配 partition 给到各个消费者。
具体案例:
假如有3个Topic :T0(三个分区P0-0,P0-1,P0-2),T1(两个分区P1-0,P1-1),T2(四个分区P2-0,P2-1,P2-2,P2-3)
有三个消费者:C0(订阅了T0,T1),C1(订阅了T1,T2),C2(订阅了T0,T2)
那么分区过程如下所示:
轮询关注的是组
分区将会按照一定的顺序(hashcode排序)排列起来,消费者将会组成一个环状的结构,然后开始轮询。
结果可能是这样的:
C0: P0-0,P0-2,P1-1
C1:P1-0,P2-0,P2-2
C2:P0-1,P2-1,P2-3
优点:
多个消费者之间消息条数差距在1以内;
缺点:
轮询的时候,可能消费者会拉取到不是自己分区的内容;
场景:所以应该在当前消费者组订阅的topic相同的情况下时使用;
2)Range(默认策略)
范围分区策略是对每个 topic 而言的,只关注单个的消费者
首先对同一个 topic 里面的分区按照序号进行排序,并对消费者(不是消费者组)按照字母顺序进行排序。通过 partitions数/consumer数 来决定每个消费者应该消费几个分区。如果除不尽,那么前面几个消费者将会多消费 1 个分区。
range跟组没什么关系,只给订阅了的消费者发,而不是给订阅了的消费者组发
缺点:随着主题数的增多,不同消费者之间消息的数量差距可能会越来越大;
场景:不同消费者订阅的topic不同;
注意:在这种分区策略下:同一消费者组中消费者个数是可以大于分区数的,但是这样会产生闲置的consumer;
2.3、offset
两种offset
Offset从语义上来看拥有两种:Current Offset和Committed Offset。
Current Offset
只要进程不挂,consumer访问的offset会是Current Offset;
Current Offset保存在Consumer客户端中,它表示Consumer希望收到的下一条消息的序号。它仅仅在pull()方法中使用。例如,Consumer第一次调用pull()方法后收到了20条消息,那么Current Offset就被设置为20。这样Consumer下一次调用pull()方法时,Kafka就知道应该从序号为21的消息开始读取。这样就能够保证每次Consumer poll消息时,都能够收到不重复的消息。
Committed Offset
进程只在开启的时候访问一次Committed Offset;
Committed Offset保存在Broker上,它表示Consumer已经确认消费过的消息的序号。主要通过commitSync(同步提交)和commitAsync(异步提交)API来操作。举个例子,Consumer通过poll() 方法收到20条消息后,此时Current Offset就是20,经过一系列的逻辑处理后,并没有调用consumer.commitAsync()或consumer.commitSync()来提交Committed Offset,那么此时Committed Offset依旧是0。
Committed Offset主要用于Consumer Rebalance。在Consumer Rebalance的过程中,一个partition被分配给了一个Consumer,那么这个Consumer该从什么位置开始消费消息呢?答案就是Committed Offset。另外,如果一个Consumer消费了5条消息(pull并且成功commitSync)之后宕机了,重新启动之后它仍然能够从第6条消息开始消费,因为Committed Offset已经被Kafka记录为5。
总结一下,Current Offset是针对Consumer的poll过程的,它可以保证每次pull都返回不重复的消息;而Committed Offset是用于Consumer Rebalance过程的,它能够保证新的Consumer能够从正确的位置开始消费一个partition,从而避免重复消费。
由于 consumer 在消费过程中可能会出现断电宕机等故障, consumer 恢复后,需要从故障前的位置继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
Consumer 事务
对于 Consumer 而言,事务的保证就会相对较弱,尤其时无法保证 Commit 的信息被精确消费。这是由于 Consumer 可以通过 offset 访问任意信息,而且不同的 Segment File 生命周期不同,同一事务的消息可能会出现重启后被删除的情况;(比如说消费者挂掉之后,刚好消息保留时间超过了kafka设定的时间,从而被删除掉了,再次开启后找不到对应的数据了)
总体而言,Consumer的Exactly Once的保证主要来自于offset机制。
Flink的Exactly Once
同样,我们需要先了解两个Flink中特别重要的概念:barrier和checkpoint;
Checkpoint机制
Flink 故障恢复机制的核心,就是应用状态的一致性检查点;
有状态流应用的一致检查点,其实就是所有任务的状态,在某个时间点的一份拷贝(一份快照);这个时间点,应该是所有任务都恰好处理完一个相同的输入数据的时候;保存的状态其实是各个任务都处理完某个数据之后的一个状态;source的状态也需要保留,用来恢复source中的数据偏移量,防止丢失数据;
checkpoint算法实现–barrier机制
简单想法
暂停应用,保存状态到检查点,再重新恢复应用;
Flink改进
基于 Chandy-Lamport 算法的分布式快照;(分别处理,最后进行拼接)
将检查点的保存和数据处理分离开,不暂停整个应用;
➢ 检查点分界线(Checkpoint Barrier)
Flink 的检查点算法用到了一种称为分界线(barrier)的特殊数据形式,用来把一条流上数据按照不同的检查点分开;
分界线之前到来的数据导致的状态更改,都会被包含在当前分界线所属的检查点中;而基于分界线之后的数据导致的所有更改,就会被包含在之后的检查点中;
举例说明:类似于 bbbbb|ooo|aaa ; o、a、b表示数据,|表示分界线barrier; 假设a先被处理,当a被处理完,触发到第一个barrier时,此时状态会被保存到状态后端中,当o被处理完时,触发到第二个barrier,此时状态也会被保存到状态后端中,哪一段地方出了问题,可以直接通过barrier对应的checkpoint中获取状态,然后读取状态;
图解说明:
现在是一个有两个输入流(都是1、2、3、4、5、6的数据流行)(奇数求和和偶数求和)的应用程序,用并行的两个 Sourc e 任务来读取;不同颜色表示不同的流和流数据;
第一个蓝2:蓝流Source的1和Odd numbers的1相加得到;
第一个橙2:橙流Source的2和Even numbers的0相加得到;
第一个橙5:之前的2+Oddnumbers的3得到,此时蓝3还没有到;
Barrier如何产生的?
上方三角形蓝色的2就是检查点的ID(不是数据),而且这个checkpoint会发给所有并行Source;(JobManager主导的自动存盘过程)
此时蓝2和橙2已经从Sink处输出;此时Source中的偏移量分别为3和4;
检查点的保存
数据源将它们的状态写入检查点,并发出一个检查点 barrier;
状态后端在状态存入检查点之后,会返回通知给 source 任务,source 任务就会 向 JobManager 确认检查点完成;
把之前记录到的蓝流3偏移量和橙流4偏移量进行保存,存储到状态后端对应的存储空间中;同时,把2号检查点的快照信息反馈给JobManager,JobManager记录对应checkpoint和对应的存储地址即可;此时不影响TaskManager的工作;同时,Source也应该给下游所有的任务进行广播发送checkpoint信息(这样每个下游任务都知道任务进行到何处了);
同时,这一步蓝2和蓝3也进行了更新;
那么每一个任务是如何保存Barrier的呢?
注意到上图中此时蓝2和橙2checkpoint都会发送到每一个下游任务中,那么下游任务的快照到底是什么时候开始的?
注意上方蓝2checkpoint是在蓝4之前的,如果发生上图这种情况,如果蓝4在橙2进入Sum之前现行进入Sum了,那么根据一致性检查点的定义,这里就会出现问题;(这里的情况是很有可能发生的,比如一个Slot的并行度情况,一定会发生蓝2或者橙2现行进入Sum的情况,所以需要解决这个问题)
这里就需要引入一个概念
-
分界线对齐:
-
barrier 向下游传递,sum 任务会等待所有输入分区的 barrier到达;
-
对于barrier已经到达的分区,继续到达的数据会被缓存;
-
而barrier尚未到达的分区,数据会被正常处理;
这么做的目的是为了让barrier到达时,确保其之前的数据已经全部运算完了;
注意:如果没有barrier对齐,那么最后的状态一致性分类就是At-least-once;
当收到所有输入分区的 barrier 时,任务就将其状态保存到状态后端的检查点中,然后将 barrier 继续向下游转发;
也即这里的两个Sum任务会等待所有的橙2和蓝2checkpoint到达后才会进行下一步,此时的Sum保存的状态都是8,这也会保存到检查点中;
向下游转发检查点 barrier后,任务继续正常的数据处理;
注意:Sink在收到checkpoint的信息后,也会向JobManager返回确认状态;
当所有任务都确认已成功将状态保存到检查点时,检查点就真正完成了。
Flink端到端状态一致性
由于输出的文件很难在文件系统中做到全盘重新扫描和回滚操作,所以需要在Sink端输出结果时,注意输出方式;
幂等写入(Idempotent)(了解)
过程并不是指写入一次,但结果满足EXACTLY-ONCE要达到的结果;
过程思考:类似对e*x求导结果还是e*x;(结果不影响)
也类似HashMap的写入,value与key对应,无论写入多少次,结果不变;
所以使用幂等写入会造成:可能会出现重复的一个输出过程,但最终的计算结果是一样的;
事务写入(Transactional Writes)
• 实现思想:构建的事务对应着 checkpoint,等到 checkpoint 真正完成的时候,才把所有对应的结果写入 sink 系统中;
• 实现方式
➢ 预写日志
预写日志:(Write-Ahead-Log,WAL)
把结果数据先当成状态保存,然后在收到 checkpoint 完成的通知时,一次性写入 sink 系统;
简单易于实现,由于数据提前在状态后端中做了缓存,所以无论什么sink 系统,都能用这种方式一批搞定;
DataStream API 提供了一个模板类:GenericWriteAheadSink,来实现这种事务性 sink;
缺点:类似批处理,影响了效率;
➢ 两阶段提交
两阶段提交:(Two-Phase-Commit,2PC)
对于每个 checkpoint,sink 任务会启动一个事务,并将接下来所有接收的数据添加到事务里;
然后将这些数据写入外部 sink 系统,但不提交它们 —— 这时只是“预提交”;
当它收到 checkpoint 完成的通知时,它才正式提交事务,实现结果的真正写入;(这里的等到checkpoint完成通知是指要等JobManager返回完成的通知信息,而不是任务做完就结束了)
这种方式真正实现了 exactly-once,它需要一个提供事务支持的外部sink 系统。Flink 提供了 TwoPhaseCommitSinkFunction 接口。
Flink+Kafka 端到端状态一致性的保证
内部 —— 利用 checkpoint 机制,把状态存盘,发生故障的时候可以恢复,保证内部的状态一致性;
• source —— kafka consumer 作为 source,可以将偏移量保存下来,如果后续任务出现了故障,恢复的时候可以由连接器重置偏移量,重新消费数据,保证一致性;
• sink —— kafka producer 作为sink,采用两阶段提交 sink,需要实现一个 TwoPhaseCommitSinkFunction。