C循环结构程序设计

本文通过三个编程任务介绍了C语言中的循环结构,包括使用while循环求解最大公约数和最小公倍数,do-while循环找出100至999之间的水仙花数,以及使用for循环输出不同大小的菱形图案。每个任务都提供了详细的任务描述、编程要求和测试案例。
摘要由CSDN通过智能技术生成

第1关:求最大公约数和最小公倍数

任务描述
本关任务:输入两个正整数 m 和 n ,求其最大公约数和最小公倍数(要求用 while 语句实现)。

编程要求
在右侧编辑器中的Begin-End之间补充代码,以实现求两个数(数据由平台输入,两个数用一个空格隔开,你只需获取即可)的最小公倍数和最大公约数的功能。

测试说明
平台会对你编写的代码进行测试,比对你输出的数值与实际正确数值,只有所有数据全部计算正确才能通过测试:

测试输入:66 33
预期输出:33 66

测试输入:2 9
预期输出:1 18

开始你的任务吧,祝你成功!

//包含标准输入输出函数
#include <stdio.h>
方案一:暴力枚举法 思路:对于每个在m和n之间的数,都进行一次素数判断,如果是素数就输出。 C语言代码: ```c #include <stdio.h> int is_prime(int x) // 判断素数函数 { int i; if(x == 2) // 特判2 return 1; if(x < 2 || x % 2 == 0) // 排除偶数和小于2的数 return 0; for(i = 3; i * i <= x; i += 2) // 枚举奇数 if(x % i == 0) return 0; return 1; } int main() { int m, n, cnt = 0; scanf("%d%d", &m, &n); for(int i = m; i <= n; i++) { if(is_prime(i)) { printf("%6d", i); // 输出 cnt++; if(cnt % 5 == 0) // 每行5个数据 printf("\n"); } } if(cnt % 5 != 0) // 处理最后一行不足5个数据的情况 printf("\n"); return 0; } ``` 注释: 1. `is_prime`函数:判断一个数是否为素数,返回值为1表示是素数,返回值为0表示不是素数。 2. 特判2:2是最小的素数,需要特判。 3. 排除偶数和小于2的数:因为偶数都可以被2整除,所以只需枚举奇数;小于2的数都不是素数。 4. 枚举奇数:从3开始枚举奇数,因为偶数已经被排除了,所以可以直接从3开始,每次加2。 5. 输出:用`printf("%6d", i)`输出一个整数,占6列,右对齐;用`cnt`计数,每输出一个素数,`cnt`加1;每输出5个数据,就换行。 6. 处理最后一行不足5个数据的情况:如果最后一行不足5个数据,就在最后再换行一次。 方案二:埃氏筛法 思路:先用一个数组`is_prime`存储所有可能的素数,然后从小到大枚举每个素数,将它的倍数标记为非素数。 C语言代码: ```c #include <stdio.h> #include <string.h> #define MAXN 1000000 int is_prime[MAXN + 1]; // is_prime[i]为1表示i是素数,为0表示i是非素数 int main() { int m, n, cnt = 0; scanf("%d%d", &m, &n); memset(is_prime, 1, sizeof(is_prime)); // 初始化为全部是素数 is_prime[0] = is_prime[1] = 0; // 0和1不是素数 for(int i = 2; i <= n; i++) { if(is_prime[i]) // i是素数 { if(i >= m) // i在[m, n]之间 { printf("%6d", i); // 输出 cnt++; if(cnt % 5 == 0) // 每行5个数据 printf("\n"); } for(int j = 2 * i; j <= n; j += i) // 将i的倍数标记为非素数 is_prime[j] = 0; } } if(cnt % 5 != 0) // 处理最后一行不足5个数据的情况 printf("\n"); return 0; } ``` 注释: 1. `is_prime`数组:用来存储所有可能的素数,初始时全部赋值为1,表示都是素数。 2. 初始化:0和1都不是素数,所以要将它们标记为非素数。 3. 输出:与方案一相同,但是只输出在[m, n]之间的素数。 4. 埃氏筛法:从小到大枚举每个素数,将它的倍数标记为非素数。如果一个数i是素数,那么它的倍数2i、3i、4i...都不是素数,因为它们都可以分解成i×2、i×3、i×4...。注意:这里从2i开始,因为i的倍数1i已经是i本身,所以不需要标记。 两种方案的时间复杂度都是O((n-m+1)loglogn),但是方案二的常数要小一些,因为它不需要对每个数都进行素数判断。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ssaty.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值