集成学习分类

博客探讨了弱分类器和强分类器的区别,指出准确率60%-80%的为弱分类器,90%以上为强分类器。介绍了集成学习,特别是AdaBoost作为提升分类性能的方法,并预告将通过编写乳腺癌分类程序应用集成学习。
摘要由CSDN通过智能技术生成

第1关:弱分类器与强分类器

任务描述
本关任务:了解弱分类器与强分类器的关系。

相关知识
概念简介
分类是指在已有数据的基础上学会一个分类函数或构造出一个分类模型。该函数或模型能够把数据库中的数据映射到给定类别中的某一个,从而应用于数据预测。常用分类器包含决策树、逻辑回归、朴素贝叶斯、神经网络等算法。
一般我们定义,一个分类器的分类准确率在60%-80%,即比随机预测略好,但准确率却不太高,我们可以称之为弱分类器,反之,如果分类精度90%以上,则是强分类器。

集成学习大致可以分为Bagging和Boosting这两类方法,其中Bagging类代表性方法有随机森林,Boosting类代表性方法有AdaBoost,接下来我们以更有效的AdaBoost类方法为例,来深入了解弱分类器与强分类器的关联。

1题

集成学习主要包括两类方法,Bagging类方法和Boosting类方法。

第2题

如果你的AdaBoost集成对训练集拟合不足,可以尝试提升估算器的数量或是降低基础估算器的正则化超参数,也可以尝试略微提升学习率。

第3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ssaty.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值