第1关:弱分类器与强分类器
任务描述
本关任务:了解弱分类器与强分类器的关系。
相关知识
概念简介
分类是指在已有数据的基础上学会一个分类函数或构造出一个分类模型。该函数或模型能够把数据库中的数据映射到给定类别中的某一个,从而应用于数据预测。常用分类器包含决策树、逻辑回归、朴素贝叶斯、神经网络等算法。
一般我们定义,一个分类器的分类准确率在60%-80%,即比随机预测略好,但准确率却不太高,我们可以称之为弱分类器,反之,如果分类精度90%以上,则是强分类器。
集成学习大致可以分为Bagging和Boosting这两类方法,其中Bagging类代表性方法有随机森林,Boosting类代表性方法有AdaBoost,接下来我们以更有效的AdaBoost类方法为例,来深入了解弱分类器与强分类器的关联。
第1题
集成学习主要包括两类方法,Bagging类方法和Boosting类方法。
第2题
如果你的AdaBoost集成对训练集拟合不足,可以尝试提升估算器的数量或是降低基础估算器的正则化超参数,也可以尝试略微提升学习率。
第3