问题求解与实践-简单数值计算(二)

这篇博客介绍了如何使用Python实现牛顿迭代法求解一元非线性方程和高斯法求解线性方程组。在牛顿法部分,详细阐述了算法的前提条件和实现步骤,而高斯法部分则讲解了列主元高斯消去法的原理。通过实例展示了非法输入和正确解的情况。
摘要由CSDN通过智能技术生成

第1关:牛顿迭代法求解一元非线性方程

任务描述
本关任务:使用牛顿迭代法求解一元多项式非线性方程。表达式中的多项式系数和常数皆不超过小数点后4位。浮点数数据类型为float,若有近似解时,使用系统默认浮点数类型直接计算,并将计算结果按照小数点后4位直接截断,本题中表达式阶数不超过8阶。

相关知识
牛顿法求解一元非线性方程:
设函数f(x)在区间[a,b]内存在二阶连续导数,且满足以下条件。
(1)f(a)f(b)<0
(2) 当x∈[a,b]时,f^‘\left( x \right) \ne 0
(3) 当x∈(a,b)时,f
′′
(x)不变号
(4)a-\frac{f\left( a \right)}{f^’\left( a \right)}\leqslant b,b-\frac{f\left( b \right)}{f^'\left( b \right)}\geqslant a

编程要求
在main函数中,要求用户提供输入,输出如下。

输入为两行,第一行为多项式表达式,第二行为两个数字,中间用空格隔开,分别表示左区间,右区间。(默认左区间小于右区间)。
例如:第一行输入为3x3-x2+x-4.944,第

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ssaty.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值