龙龙是“饱了呀”外卖软件的注册骑手,负责送帕特小区的外卖。帕特小区的构造非常特别,都是双向道路且没有构成环 —— 你可以简单地认为小区的路构成了一棵树,根结点是外卖站,树上的结点就是要送餐的地址。
每到中午 12 点,帕特小区就进入了点餐高峰。一开始,只有一两个地方点外卖,龙龙简单就送好了;但随着大数据的分析,龙龙被派了更多的单子,也就送得越来越累……
看着一大堆订单,龙龙想知道,从外卖站出发,访问所有点了外卖的地方至少一次(这样才能把外卖送到)所需的最短路程的距离到底是多少?每次新增一个点外卖的地址,他就想估算一遍整体工作量,这样他就可以搞明白新增一个地址给他带来了多少负担。
输入格式:
输入第一行是两个数 N 和 M (2≤N≤1e5, 1≤M≤1e5),分别对应树上节点的个数(包括外卖站),以及新增的送餐地址的个数。
接下来首先是一行 N 个数,第 i 个数表示第 i 个点的双亲节点的编号。节点编号从 1 到 N,外卖站的双亲编号定义为 −1。
接下来有 M 行,每行给出一个新增的送餐地点的编号 Xi。保证送餐地点中不会有外卖站,但地点有可能会重复。
为了方便计算,我们可以假设龙龙一开始一个地址的外卖都不用送,两个相邻的地点之间的路径长度统一设为 1,且从外卖站出发可以访问到所有地点。
注意:所有送餐地址可以按任意顺序访问,且完成送餐后无需返回外卖站。
输出格式:
对于每个新增的地点,在一行内输出题目需要求的最短路程的距离。
输入样例:
7 4
-1 1 1 1 2 2 3
5
6
2
4
输出样例:
2
4
4
6
解析:
首先dfs出每个结点到根节点的距离,假设最后要返回根节点,则所有经过的路径都会经过两次。所以要求最短路径,我们只需要最后访问最远的结点即可,这样可以省下最长的一段路径。
所以每次新添加的结点,回溯到其到根节点的路径上的距离其最近的并且已经走过的点,加上这段距离差,然后维护最大值,输出总距离的两倍减去当前维护的最长距离即可。
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int n,m,t,a[N],maxx,dis[N],sum,k,vis[N],s;
vector<int>e[N];
void dfs(int x,int d){
dis[x]=d;
for(int i=0;i<e[x].size();i++) dfs(e[x][i],d+1);
}
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
if(a[i]==-1) s=i;
else e[a[i]].push_back(i);
}
dfs(s,0),vis[s]=1;
for(int i=0;i<m;i++){
scanf("%d",&t),k=t;
while(!vis[k]) vis[k]=1,k=a[k];
maxx=max(maxx,dis[t]);
sum+=dis[t]-dis[k];
printf("%d\n",sum*2-maxx);
}
return 0;
}