[蓝桥杯 2021 省 AB2] 小平方
题目描述
小蓝发现,对于一个正整数 n n n 和一个小于 n n n 的正整数 v v v,将 v v v 平方后对 n n n 取余可能小于 n n n 的一半,也可能大于等于 n n n 的一半。
请问,在 1 1 1 到 n − 1 n-1 n−1 中, 有多少个数平方后除以 n n n 的余数小于 n n n 的一半。
例如,当 n = 4 n=4 n=4 时, 1 , 2 , 3 1,2,3 1,2,3 的平方除以 4 4 4 的余数都小于 4 4 4 的一半。
又如,当 n = 5 n=5 n=5 时, 1 1 1, 4 4 4 的平方除以 5 5 5 的余数都是 1 1 1,小于 5 5 5 的一半。而 2 2 2, 3 3 3 的平方除以 5 5 5 的余数都是 4 4 4, 大于等于 5 5 5 的一半。
输入格式
输入一行包含一个整数 n n n 。
输出格式
输出一个整数,表示满足条件的数的数量。
样例 #1
样例输入 #1
5
样例输出 #1
2
提示
对于所有评测用例, 1 ≤ n ≤ 10000 1 \leq n \leq 10000 1≤n≤10000。
蓝桥杯 2021 第二轮省赛 A 组 F 题(B 组 G 题)。
#include<bits/stdc++.h>
using namespace std;
//#define int long long
const int N=2e5+5;
int n,ans;
void solve(){
scanf("%d",&n);
for(int i=1;i<n;i++){
if(i*i%n<=n/2) ans++;
}
cout<<ans;
}
signed main(){
int t=1;
// scanf("%d",&t);
while(t--) solve();
return 0;
}