题目背景
kotori 有 n n n 个可同时使用的设备。
题目描述
第 i i i 个设备每秒消耗 a i a_i ai 个单位能量。能量的使用是连续的,也就是说能量不是某时刻突然消耗的,而是匀速消耗。也就是说,对于任意实数,在 k k k 秒内消耗的能量均为 k × a i k\times a_i k×ai 单位。在开始的时候第 i i i 个设备里存储着 b i b_i bi 个单位能量。
同时 kotori 又有一个可以给任意一个设备充电的充电宝,每秒可以给接通的设备充能 p p p 个单位,充能也是连续的,不再赘述。你可以在任意时间给任意一个设备充能,从一个设备切换到另一个设备的时间忽略不计。
kotori 想把这些设备一起使用,直到其中有设备能量降为 0 0 0。所以 kotori 想知道,在充电器的作用下,她最多能将这些设备一起使用多久。
输入格式
第一行给出两个整数 n , p n,p n,p。
接下来 n n n 行,每行表示一个设备,给出两个整数,分别是这个设备的 a i a_i ai 和 b i b_i bi。
输出格式
如果 kotori 可以无限使用这些设备,输出 − 1 -1 −1。
否则输出 kotori 在其中一个设备能量降为 0 0 0 之前最多能使用多久。
设你的答案为
a
a
a,标准答案为
b
b
b,只有当
a
,
b
a,b
a,b 满足
∣
a
−
b
∣
max
(
1
,
b
)
≤
1
0
−
4
\dfrac{|a-b|}{\max(1,b)} \leq 10^{-4}
max(1,b)∣a−b∣≤10−4 的时候,你能得到本测试点的满分。
样例 #1
样例输入 #1
2 1
2 2
2 1000
样例输出 #1
2.0000000000
样例 #2
样例输入 #2
1 100
1 1
样例输出 #2
-1
样例 #3
样例输入 #3
3 5
4 3
5 2
6 1
样例输出 #3
0.5000000000
提示
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 100000 1\leq n\leq 100000 1≤n≤100000, 1 ≤ p ≤ 100000 1\leq p\leq 100000 1≤p≤100000, 1 ≤ a i , b i ≤ 100000 1\leq a_i,b_i\leq100000 1≤ai,bi≤100000。
解析
浮点数二分答案,
c
h
e
c
k
check
check当前的
m
i
d
mid
mid 时间是否合法
注意
−
1
-1
−1 的情况为,所有设备消耗的速度总和
s
u
m
≤
p
sum\leq p
sum≤p
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=1e5+5;
int n,p,a[N],b[N],sum=0;
bool check(double mid){
double s=mid;
for(int i=1;i<=n;i++){
if(a[i]*mid<=b[i]) continue;
s-=(a[i]*mid-b[i])/p;
if(s<0) return false;
}
return true;
}
void solve(){
scanf("%lld%lld",&n,&p);
for(int i=1;i<=n;i++){
scanf("%lld%lld",&a[i],&b[i]);
sum+=a[i];
}
if(sum<=p){
puts("-1");
return;
}
double l=0,r=1e10;
while(r-l>1e-4){
double mid=(l+r)/2.0;
if(check(mid)) l=mid;
else r=mid;
}
printf("%lf",l);
}
signed main(){
int t=1;
// scanf("%d",&t);
while(t--) solve();
return 0;
}